Objective:
While transient ischemic attack (TIA) is a well-known harbinger of ischemic stroke, the mechanisms that link TIA to subsequent strokes remain poorly understood. The overall aim of this study was to determine whether: 1) brief periods of transient cerebral ischemia render this tissue more vulnerable to thrombus development and 2) antiplatelet agents used in TIA patients alter ischemia-induced thrombogenesis.
Approach & Results:
The middle cerebral artery of C57BL/6 mice was occluded for 2.5 – 10 minutes, followed by reperfusion periods of 1 – 28 days. Intravital microscopy was used to monitor thrombus development in cerebral microvessels induced by light/dye photoactivation. Thrombosis was quantified as the time to platelet aggregation on the vessel wall and the time for complete blood flow cessation. While brief periods of cerebral ischemia were not associated with neurological deficits or brain infarction (evaluated after 1 day), it yielded a pronounced and prolonged (up to 28 days) acceleration of thrombus formation, compared to control (sham) mice. This prothrombotic phenotype was not altered by pre- and/or post-treatment of mice with either aspirin (A), clopidogrel (C), dipyridamole (D), or atorvastatin (S), or with A + D + S.
Conclusions:
The increased vulnerability of the cerebral vasculature to thrombus development after a brief period of transient ischemia can be recapitulated in a murine model. Antiplatelet or antithrombotic agents used in patients with TIA show no benefit in this mouse model of brief transient ischemia.
Objective
The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles.
Approach & results
The middle cerebral artery of C57BL/6J mice was occluded for 5 minutes, followed by 24 hrs of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6−/−) mice. Bone marrow chimeras, produced by transplanting IL-6−/− marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis.
Conclusions
The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.