The silkworm Bombyx mori is an important economic insect for producing silk, the “queen of fabrics”. The currently available genomes limit the understanding of its genetic diversity and the discovery of valuable alleles for breeding. Here, we deeply re-sequence 1,078 silkworms and assemble long-read genomes for 545 representatives. We construct a high-resolution pan-genome dataset representing almost the entire genomic content in the silkworm. We find that the silkworm population harbors a high density of genomic variants and identify 7308 new genes, 4260 (22%) core genes, and 3,432,266 non-redundant structure variations (SVs). We reveal hundreds of genes and SVs that may contribute to the artificial selection (domestication and breeding) of silkworm. Further, we focus on four genes responsible, respectively, for two economic (silk yield and silk fineness) and two ecologically adaptive traits (egg diapause and aposematic coloration). Taken together, our population-scale genomic resources will promote functional genomics studies and breeding improvement for silkworm.
BackgroundGiardiasis, caused by Giardia duodenalis (syn. Giardia intestinalis, Giardia lamblia), is a significant zoonotic parasitic disease of animals and humans worldwide. Accurate genotyping of G. duodenalis is essential for efficient control and management of giardiasis. The objectives of the present study were to investigate the prevalence and assemblages of giardiasis in pigs in Shaanxi Province, northwestern China, and for the first time study multilocus genotypes (MLGs) in pigs using multilocus genotyping technology in this region.ResultsOf 560 faecal samples collected from five farms in Shaanxi Province, 45 were positive for G. duodenalis and significant differences in prevalence were observed among different locations. Differences in prevalence were also detected in pigs of different age groups, with the highest prevalence in sows and the lowest in boars. Two assemblages, A and E, were identified, and a mixed infection of both A and E was identified in one faecal sample. Assemblage E was predominant and widely distributed in all investigated areas and age groups. Genetic viability was detected for both assemblages, and four different multi-locus genotypes (MLGs) within assemblage E were found, MLGE1-MLGE4.Conclusions
Giardia duodenalis was detected in pigs from Shaanxi Province, northwestern China, and genetic diversity was observed in these infections. Both assemblages A and E were detected, and four distinct MLGs within assemblage E were identified. These findings provide new data for controlling G. duodenalis infection in pigs.
Cryptosporidium parvum is one of the most important enteric protozoan pathogens, responsible for severe diarrhea in immunocompromised human and livestock. However, few effective agents were available for controlling this parasite. Accumulating evidences suggest that long non-coding RNA (lncRNA) played key roles in many diseases through regulating the gene expression. Here, the expression profiles of lncRNAs and mRNAs were analyzed in HCT-8 cells infected with C. parvum IId subtype using microarray assay. A total of 821 lncRNAs and 1,349 mRNAs were differentially expressed in infected cells at 24 h post infection (pi). Of them, all five types of lncRNAs were identified, including 22 sense, 280 antisense, 312 intergenic, 44 divergent, 33 intronic lncRNAs, and 130 lncRNAs that were not found the relationship with mRNAs’ location. Additionally, real-time polymerase chain reactions of 10 lncRNAs and 10 mRNAs randomly selected were successfully confirmed the microarray results. The co-expression and target prediction analysis indicated that 27 mRNAs were cis-regulated by 29 lncRNAs and 109 were trans-regulated by 114 lncRNAs. These predicted targets were enriched in several pathways involved in the interaction between host and C. parvum, e.g., hedgehog signaling pathway, Wnt signaling pathway, and tight junction, suggesting that these differentially expressed lncRNAs would play important regulating roles during the infection of C. parvum IId subtype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.