In the paper, we consider a method of ground temperature monitoring using the thermometric boreholes and computer modeling the residential buildings with the pile foundation in the city of Salekhard; note that it is located in the permafrost zone. Construction of the residential buildings and industrial structures in the permafrost zone and their operation is carried out according to the principle of preserving the frozen state of foundations. For ground temperature monitoring, thermometric boreholes are used. In a given time period, the measured temperatures are transferred to a server for further processing. Information about the temperature is an important factor for the safety of the buildings and it can be used to evaluate the piles bearing capacity. It allows to propose options for the soil thermal stabilization or to eliminate the detected technogenic heat sources. An approach of mathematical modeling to reconstruct the temperature fields in the pile foundation base of a building is discussed taking into account the data of temperature monitoring. 24 boreholes were equipped with more than 400 in-borehole thermal sensors for testing the method under the residential building I. The preliminary modeling is carried out for December and January 2020 for the contact thermal conductivity model with phase transition with the upper part of the geological section typical for Salekhard (the sandy soils). The modeling describes the freezing processes during the months in detail. The thermal monitoring allows to say that the ground in the base of the Residential building I is stable. But there are detected heat transfers near the borehole T1 at the depth of 12–14 m. The combination of monitoring and computer modeling makes it possible to assess the safety of the operation of the residential buildings in cities located in the permafrost zones.
The effect the metal casing of a vertical borehole may exert on transient electromagnetic (TEM) responses has been studied in a field experiment. Eddy currents in the casing affect transients only slightly at early times, but the casing effect predominates at late times. Therefore, early-time TEM response measured near a borehole can provide information on shallow subsurface. The late-time TEM signals induced by the eddy currents in the casing show exponential behavior b⋅exp(-t/τ). The time constant τ refers to the rate of eddy current decay in the casing; the amplitude b is M 12 ⋅M 23 ⋅L -1 ⋅τ -1 , where L is the casing self-inductance, and M 12 and M 23 are the mutual inductances between the transmitter loop and the borehole and between the borehole and the receiver, respectively. Both M 12 and M 23 are controllable, while M 23 is especially important for survey applications: by reducing it, one can reduce the casing effect on the TEM data.
A system of automatic temperature monitoring of permafrost at the base of capital facilities in Salekhard, which has been developed since 2018 are described in the paper. Together with Kurakov S.A. (Tomsk), thermometric equipment has been developed that allows remote control of registration and transmits soil temperature from wells to the server. A data collection and visualization portal has been created. To process temperature data, a program has been developed for computer modeling of three-dimensional non-stationary thermal fields in the ground in the entire area of the pile foundation, considering the geological structure. The developed software makes it possible to estimate changes in soil temperature under various climate change scenarios. Such estimates allow us to prevent possible emergencies.
Transient electromagnetic responses measured in the field or in the laboratory may bear effects of viscous remanent magnetization (VRM) associated with magnetic relaxation of ultrafine grains of ferrimagnetic minerals or superparamagnetism. The behavior of VRM can be studied in time or frequency domain, TDEM measurements being advantageous because they are done in the absence of primary field and owing to broad time range providing high accuracy of VRM parameters. Another advantage is that the rate of viscous decay measured as voltage decay does not need to be corrected for stable and/or slowly decaying viscous component of total remanence. Time-dependent transient responses of viscous decay follow the power law a ⋅ t–b, where a is the initial emf signal (varying in a broad range) and b is the exponent approaching 1. Laboratory tests with a pulse induction coil system reveal a strong linear correlation of the parameter a with frequency-dependent magnetic susceptibility Δκ used commonly for constraining the relative abundances of superparamagnetic particles. Such systems are thus suitable for quick measurements of the large number of samples for detection of superparamagnetic (SP) particles and quantifying their contribution. The difference of b from 1, though being minor, exceeds markedly its error in estimates from measured data. Simulated TDEM responses of a superparamagnetic ground show both parameters (a and b) to depend on particle volume distribution, which is prerequisite for inversion of time-domain transients to magnetic properties of rocks and soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.