Osteoclasts are bone tissue macrophages critical to maintain bone homeostasis. However, whether osteoclasts are susceptible to flaviviral infections and involved in dengue virus (DV)-induced disease pathogenesis is still unknown. In this study, we found that osteoclasts were preferentially susceptible to DV infection and produced similar amounts of cytokines and infectious virions as macrophages. Interestingly, DV-induced cytokine secretion and nuclear translocation of the transcription factor NFATc1 in osteoclast via the Syk-coupled myeloid C-type lectin member 5A (CLEC5A). Moreover, DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity to release C-telopeptide of type I collagen (CTX-1) from bone tissue. Furthermore, DV-induced osteolytic activity was attenuated in CLEC5A-deficient mice, and administration of antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity and reduced CTX-1 serum level in vivo. This observation suggests that osteoclasts serve as a novel target for DV, and transient upregulation of osteolytic activity may contribute to the clinical symptoms in dengue patients.Key messagesCultured osteoclasts were susceptible to DV infection.Osteoclasts produced similar amounts of cytokines and infectious virions as macrophages.DV induced nuclear translocation of NFATc1 in osteoclast via CLEC5A.DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity.Antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity in vivo.Electronic supplementary materialThe online version of this article (doi:10.1007/s00109-016-1409-0) contains supplementary material, which is available to authorized users.
Human C-type lectin member 18A (CLEC18A) is ubiquitously expressed in human, and highest expression levels are found in human myeloid cells and liver. In contrast, mouse CLEC18A (mCLEC18A) is only expressed in brain, kidney and heart. However, the biological functions of CLEC18A are still unclear. We have shown that a single amino acid change (S339 →R339) in CTLD domain has profound effect in their binding to polysaccharides and house dust mite allergens. In this study, we further demonstrate that CLEC18A and its mutant CLEC18A(S339R) associate with TLR3 in endosome and bind poly (I:C) specifically. Compared to TLR3 alone, binding affinity to poly (I:C) is further increased in TLR3-CLEC18A and TLR3-CLEC18A(S339R) complexes. Moreover, CLEC18A and CLEC18A(S339R) enhance the production of type I and type III interferons (IFNs), but not proinflammatory cytokines, in response to poly (I:C) or H5N1 influenza A virus (IAV) infection. Compared to wild type (WT) mice, ROSA-CLEC18A and ROSA-CLEC18A(S339R) mice generate higher amounts of interferons and are more resistant to H5N1 IAV infection. Thus, CLEC18A is a TLR3 co-receptor, and may contribute to the differential immune responses to poly (I:C) and IAV infection between human and mouse.
BackgroundHepatitis B virus (HBV) infection is a common disease worldwide and is known to cause liver disease. C-type lectin 18 (CLEC18) is a novel secretory lectin highly expressed in human hepatocytes. Because the liver is the major target of HBV infection, we investigated whether the expression of CLEC18 can be used as a biomarker for HBV infection.MethodsThe expression level of CLEC18 in human liver chimeric mice with/without HBV infection was measured by quantitative real time polymerase chain reaction (qPCR) assay. Baseline plasma CLEC18 levels in 271 treatment-naive patients with chronic hepatitis B (CHB) undergoing nucleos(t)ide analogue (NUC) therapy and 35 healthy donors were measured by enzyme-linked immunosorbent assay, and the relationships to other clinical data were analyzed.ResultsThe expression of CLEC18 was down-regulated in the human liver chimeric mice after HBV infection. Plasma CLEC18 levels were lower in the patients with CHB compared to the healthy donors and positively correlated with HBV DNA and HBsAg levels (P < 0.05). Multivariate Cox proportional hazard regression analysis identified a baseline plasma CLEC18 level of 320–2000 pg/mL to be an independent predictor of HBeAg loss (hazard ratio (HR): 2.077, P = 0.0318), seroconversion (HR: 2.041, P = 0.0445) and virological response (HR: 1.850, P = 0.0184) in 101 HBeAg-positive patients with CHB undergoing NUC therapy.ConclusionsPlasma CLEC18 levels were correlated with the stage of HBV infection and could predict HBeAg loss and seroconversion in the patients with CHB undergoing NUC therapy.Electronic supplementary materialThe online version of this article (10.1186/s12929-018-0460-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.