Interactions between cytokine and receptor lead to the activation of multiple signalling molecules, including the family of signal transducer and activator of transcription (STAT) proteins. STAT4 is one member of this family, and is activated only in response to the cytokine interleukin (IL)-12 (refs 5, 6). By gene targeting, we have generated mice deficient in STAT4 to determine whether the function of this transcription factor is redundant with other signalling molecules activated by IL-12. IL-12-induced increases in the production of interferon (IFN)-gamma cellular proliferation and natural killer (NK) cell cytotoxicity are abrogated in lymphocytes from STAT4-deficient mice. The development of Th1 cells in response to either IL-12 of Listeria monocytogenes is also impaired in the absence of Stat4. Furthermore, Stat4-deficient lymphocytes demonstrate a propensity towards the development of Th2 cells. These results demonstrate that Stat4 is essential for mediating responses to IL-12 in lymphocytes, and regulating the differentiation of both Th1 and Th2 cells.
The activation of cytokine genes in response to antigenic stimulation of T cells is mediated by NF-AT proteins. Previous studies have identified two NF-AT proteins, NF-ATp and NF-ATc, that are homologous within a 290 aa domain distantly related to the Rel domain. We have isolated two additional members of this gene family, NF-AT3 and NF-AT4, which encode proteins 65% identical to the other NF-AT proteins within the Rel domain. The four NF-AT genes are transcribed in different sets of tissues that included many sites of expression outside the immune system. The Rel homology domain is sufficient for DNA recognition and cooperative binding interactions with AP-1. Although other members of the Rel family bind DNA as dimers, NF-AT proteins are monomers in solution or bound to DNA. Transfection assays indicate that each of the four NF-AT proteins can activate the IL-2 promoter in T cells.
STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.
SummaryAt the onset of sporulation in Bacillus subtilis, two potential division sites are assembled at each pole, one of which will be used to synthesize the asymmetrically positioned sporulation septum. Using the vital stain FM 4-64 to label the plasma membrane of living cells, we examined the fate of these potential division sites in wild-type cells and found that, immediately after the formation of the sporulation septum, a partial septum was frequently synthesized within the mother cell at the second potential division site. Using time-lapse deconvolution microscopy, we were able to watch these partial septa first appear and then disappear during sporulation. Septal dissolution was dependent on E activity and was partially inhibited in mutants lacking the E -controlled proteins SpoIID, SpoIIM and SpoIIP, which may play a role in mediating the degradation of septal peptidoglycan. Our results support a model in which E inhibits division at the second potential division site by two distinct mechanisms: inhibition of septal biogenesis and the degradation of partial septa formed before E activation.
The transcription factors NFAT and AP-1 have been shown to be essential for inducible interleukin-2 (IL-2) expression in activated T cells. NFAT has been previously reported to bind to two sites in the IL-2 promoter: in association with AP-1 at the distal antigen response element at -280 and at -135. On the basis of DNase I footprinting with recombinant NFAT and AP-1 proteins, gel shift assays, and transfection experiments, we have identified three additional NFAT sites in the IL-2 promoter. Strikingly, all five NFAT sites are essential for the full induction of promoter activity in response to T-cell receptor stimulation. Four of the five NFAT sites are part of composite elements able to bind AP-1 in association with NFAT. These sites display a diverse range of cooperativity and interdependency on NFAT and AP-1 proteins for binding. One of the NFAT sites directly overlaps the CD28-responsive element. We present evidence that CD28 inducibility is conferred by the AP-1 component in NFAT-AP-1 composite elements. These findings provide further insight into the mechanisms involved in the regulation of the IL-2 promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.