In order to improve the obstacle-crossing ability, motion stability and load-bearing capacity of mobile robots for different terrains, the Rubik's Cube mechanism (RCM) with strong coupling and variable topology is introduced into the field of mobile robots, and a wheel-legged mobile robot (WLMR) based on RCM is proposed. Aiming at the problems of the classical three-order RCM, such as small internal space, difficult processing and demanding precision, a new type of chute third-order RCM is designed, and its mechanical characteristics analysis and feasibility analysis are carried out. What's more, a driving configuration analysis method is established according to different driving configuration relationships, and the configuration of WLMR is determined by the configuration stability analysis. Then, a WLMR with polymorphism is designed, and gait planning and gait stability analysis are conducted. Eventually, the cosimulation and prototype experiments are performed to verify the efficiency of the WLMR's straight motion, in-situ rotation, obstacle-crossing and morphology transformation in complex environments. This research not only provides a reference for the design of polymorphous mobile robots, but also opens up ideas for the application of the RCM in daily production and life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.