Sodium formate at concentration of 5-20 μM suppresses electron flow on the donor side of Photosystem 2 (PS 2) in pea subchloroplast membranes (DT-20) which is revealed by inhibition of photoinduced changes of chlorophyll fluorescence yield related to photoreduction of QA and pheophytin (the primary and intermediary electron acceptors) and oxygen evolution and the increase of absorbance changes related to photooxidation of P680, the primary electron donor, under continuous illumination. These activities are also inhibited upon partial depletion of bicarbonate in the medium and restored by the addition of 0.1-10 mM NaHCO3. At concentrations higher than 20 μM formate induces the known bicarbonate effect on the acceptor side of PS 2 which dominates at millimolar concentrations of the agent. In Tris-treated (Mn-depleted) DT-20 the restoration of electron flow with 0.2 μM MnCl2 (4 Mn atoms per one PS 2 reaction center) in the medium depleted of bicarbonate is efficient only after the addition of 5 mM NaHCO3. The restoration in the presence of NaHCO3 is accompanied by an increased functional binding of Mn(2+) to PS 2 membranes which is confirmed by experiments on removal of added Mn(2+) by either sedimentation or the addition of EDTA. Pre-illumination increases the Mn binding in the presence of bicarbonate. The data show that the bicarbonate effect on the donor side of PS 2 is related to a relatively low-affinity bound pool of bicarbonate. It is suggested that bicarbonate takes part in the formation of the Mn-cluster capable of water oxidation as an obligatory ligand or through modification of the binding site(s) of Mn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.