The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (γ) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage.
The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genus Aquilegia (Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development, POPOVICH (POP), which encodes a C2H2 zinc-finger transcription factor. POP plays a central role in regulating cell proliferation in the Aquilegia petal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification of POP opens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of the Aquilegia nectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.
Floral nectaries are an interesting example of a convergent trait in flowering plants, and are associated with the diversification of numerous angiosperm lineages, including the adaptive radiation of the New World Aquilegia species. However, we know very little as to what genes contribute to nectary development and evolution, particularly in noncore eudicot taxa. We analyzed expression patterns and used RNAi-based methods to investigate the functions of homologs from the STYLISH (STY) family in nectar spur development in Aquilegia coerulea. We found that AqSTY1 exhibits concentrated expression in the presumptive nectary of the growing spur tip, and triple gene silencing of the three STY-like genes revealed that they function in style and nectary development. Strong expression of STY homologs was also detected in the nectary-bearing petals of Delphinium and Epimedium. Our results suggest that the novel recruitment of STY homologs to control nectary development is likely to have occurred before the diversification of the Ranunculaceae and Berberidaceae. To date, the STY homologs of the Ranunculales are the only alternative loci for the control of nectary development in flowering plants, providing a critical data point in understanding the evolutionary origin and developmental basis of nectaries.
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.