Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.
Cerebral deposition of beta-amyloid (Abeta) peptides is an invariant pathological hallmark in brains of patients with Alzheimer's disease (AD) and transgenic mice coexpressing familial AD-linked APP and PS1 variants. We now report that exposure of transgenic mice to an "enriched environment" results in pronounced reductions in cerebral Abeta levels and amyloid deposits, compared to animals raised under "standard housing" conditions. The enzymatic activity of an Abeta-degrading endopeptidase, neprilysin, is elevated in the brains of "enriched" mice and inversely correlated with amyloid burden. Moreover, DNA microarray analysis revealed selective upregulation in levels of transcripts encoded by genes associated with learning and memory, vasculogenesis, neurogenesis, cell survival pathways, Abeta sequestration, and prostaglandin synthesis. These studies provide evidence that environmental enrichment leads to reductions in steady-state levels of cerebral Abeta peptides and amyloid deposition and selective upregulation in levels of specific transcripts in brains of transgenic mice.
We produced CA1-specific NMDA receptor 1 subunit-knockout (CA1-KO) mice to determine the NMDA receptor dependence of nonspatial memory formation and of experience-induced structural plasticity in the CA1 region. CA1-KO mice were profoundly impaired in object recognition, olfactory discrimination and contextual fear memories. Surprisingly, these deficits could be rescued by enriching experience. Using stereological electron microscopy, we found that enrichment induced an increase of the synapse density in the CA1 region in knockouts as well as control littermates. Therefore, our data indicate that CA1 NMDA receptor activity is critical in hippocampus-dependent nonspatial memory, but is not essential for experience-induced synaptic structural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.