The use of ionic liquids (ILs) for biomass pretreatment to produce cellulose-rich materials (CRMs) has been well proven. In this research, due to the wide range of applications and ease of using artificial intelligence procedures, on the basis of the algorithm of stochastic gradient boosting (SGB) decision tree, an artificial intelligence approach is proposed to estimate the properties of cellulose-rich materials (CRMs). That being the case, the dataset of the empirical output values was gathered and was randomly broken down into datasets for testing and training. These results show that the best forecasting tool for calculating the properties of CRMs is the developed model. Furthermore, the accuracy of the databank of the biodiesel target values has been examined. In contrast, the influences of model contributed variables on the output have been examined as a new issue. It reveals that the most influencing variable in determining the properties of CRMs is the cellulose enrichment factor. Therefore, this research provides an innovative and accurate tool for predicting the properties of CRMs and sensitivity investigation on effective parameters to help investigators developing the optimized process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.