Background: Adipogenesis is an essential process in organismal development and plays a significant role in adipose tissue homeostasis. Post-transcriptional regulation of gene expression plays a key role in adipogenesis and involves many RNA-binding proteins (RBPs). In mammals, Staufen1 (STAU1) is a conserved RBP(RNA Binding Protein )consisting of several dsRBP (double strand RNA). STAU1 plays an important role in the Stau1-mediated mRNA decay (SMD) pathway, which is related to adipocyte formation, myocyte development, and neural differentiation. Klf16 (Kruppel like transcription factor 16) is a negative regulator that inhibits adipocyte differentiation. AIM:This study was conducted to determine the role of Klf16 in adipocyte differentiation in the context of the SMD pathway.Methods: 3T3-L1 cells were induced and cultured in vitro by cocktail method, Knockdown and Overexpression of STAU1 and KLF16. Then, adipocyte differentiation andexpression of adipogenic-related genes (STAU1, KLF16, PPARγ, and Lipin1) were measured by RT-qPCR and Western blot.RNA immunoprecipitation (RIP) method verified that STAU1 protein can bind to KLF16.Results: The results revealed that STAU1 regulates Klf16 expression at the post-transcriptional level during the adipogenic differentiation of 3T3-L1 cells.STAU1 candirectly bind the 3′UTR of Klf16 mRNA. Klf16 mRNA was found to be degraded through the SMD pathway, thus promoting adipocyte differentiation.Conclusions: In this study, the mechanism of adipocyte differentiation regulation at the post-transcriptional level is demonstrated, and Klf16 is shown as a substrate of the SMD pathway, thus providing new insights into adipogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.