Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aβ1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms.
Sex differences and circadian variation are two major factors that affect the expression of drug-processing genes. This study aimed to examine sex differences in the circadian variation of hepatic cytochrome P450 (Cyp) genes and corresponding nuclear receptors. Adult mice were acclimated to environmentally controlled facilities for 2 wks, and livers were collected every 4 h during a 24-h period. Total RNA and protein were isolated and subjected to real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blot analysis. The mRNA expression of the aryl hydrocarbon receptor (AhR) and AhR-regulated Cyp1a1 and Cyp1a2 were higher in females and higher during the light phase. The mRNA expression of constitutive and rostane receptor (CAR) and CYP2B10 protein was female-predominant and higher in the dark phase. Pregnane X receptor (PXR) peaked around 18:00 h, but PXR-regulated Cyp3a11 and Cyp3a25 were higher at 10:00 h, without apparent sex dimorphism at protein levels. Peroxisome proliferator-activated receptor-a (PPARα), Cyp4a10, and Cyp4a14 were higher in females and peaked between 14:00 and 18:00 h. The mRNA levels of farnesoid X receptor (FXR), Cyp7a1, and Cyp27a1 peaked around 18:00 h and CYP7A1 protein was higher during the dark phase and higher in females. Cyp7b1(male-predominant) and Cyp2a4 (female-predominant) both showed circadian variation. Circadian variation of hepatic clock genes such as nuclear receptor Rev-erbα, cryptochrome 1 (Cry1), and brain muscle ARNT-like protein 1 (Bmal1) showed distinct patterns. Sex differences and circadian rhythmicity of Cyp genes and corresponding nuclear receptors exist in mouse liver that could impact xenobiotic metabolism and toxicity at different times of the day.
Oleanolic acid (OA) is a triterpenoid and a fantastic molecule with many beneficial effects. However, high-doses and long-term use can produce adverse effects. This study aimed to characterize the hepatotoxic potential of OA. Mice were given OA at doses of 100-3,000 µmol/kg (45-1,350 mg/kg), po for 10 days, and the hepatotoxicity was determined by serum biochemistry, histopathology, and toxicity-related gene expression via real-time RT-PCR. Animal body weight loss was evident at OA doses of 1,000 µmol/kg and above. Serum alanine aminotransferase activities were increased in a dose-dependent manner, indicative of hepatotoxicity. Serum total bilirubin concentrations were increased, indicative of cholestasis. OA administration produced dose-dependent pathological lesions to the liver, including inflammation, hepatocellular apoptosis, necrosis, and feathery degeneration indicative of cholestasis. These lesions were evident at OA doses of 500 µmol/kg and above. Real-time RT-PCR revealed that OA produced dose-dependent increases in acute phase proteins (MT-1, Ho-1, Nrf2 and Nqo1), decreases in bile acid synthesis genes (Cyp7a1 and Cyp8b1), and decreases in liver bile acid transporters (Ntcp, Bsep, Oatp1a1, Oatp1b2, and Ostβ). Thus, the clinical use of OA and OA-type triterpenoids should balance the beneficial effects and toxicity potentials.
DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders.
Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30mg/kg), α-HgS (HgS, 30mg/kg), HgCl2 (33.6mg/kg), or MeHg (3.1mg/kg) for 7days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1-4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.