A primary-auxiliary temperature sensing scheme for system-on-a-chip application is proposed in this paper. Taking advantage of the high accuracy and linearity of the analog primary temperature sensors and low production cost of the digital auxiliary temperature sensors, this sensing scheme monitors multiple hotspots in a highly integrated system chip with small area and low power. A cost efficient calibration strategy based on the difference of calibration complexity and sensitivity to the MOSFET aging between the primary and auxiliary temperature sensors is also presented in this paper. Both the temperature sensor prototypes are designed and fabricated with a 90-nm CMOS process technology. The core area of the primary/auxiliary temperature sensors is 0.039/0.001 mm 2 , and consumed energy per conversion is 20.06/0.136 nJ/S with a 1 V supply voltage and 100-kS/s conversion rate. The performance of the temperature sensors and the accuracy improvement of the proposed calibration method are proved with the measurement results.
Real-time on-chip measurement of bit error rate (BER) for high-speed analog-to-digital converters (ADCs) does not only require expensive multi-port high-speed data acquisition equipment but also enormous post-processing. This paper proposes a low-cost built-in-self-test (BIST) circuit for high-speed ADC BER test. Conventionally, the calculation of BER requires a high-speed adder. The presented method takes the advantages of Gray coding and only needs simple logic circuits for BER evaluation. The prototype of the BIST circuit is fabricated along with a 5-bit high-speed flash ADC in a 90-nm CMOS process. The active area is only 90 μm × 70 μm and the average power consumption is around 0.3 mW at 700 MS/s. The measurement of the BIST circuit shows consistent results with the measurement by external data acquisition equipment. key words: built-in self-test (BIST), bit error rate (BER), analog-to-digital converter (ADC)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.