Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform-and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGFstimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. INTRODUCTIONDynamin (Dyn) is an ϳ100-kDa multidomain GTPase that was first identified as a microtubule binding and bundling protein (Shpetner and Vallee, 1989). Subsequently, dynamin was found to be the mammalian homologue of the Drosophila protein shibire, mutations in which block endocytosis, including synaptic vesicle recycling (Chen et al., 1991;van der Bliek and Meyerowitz, 1991). Dynamin is conserved throughout higher eukaryotes. There is a single gene in Drosophila and Caenorhabditis elegans, but there are three dynamin isoforms in mammals: Dyn1, which is specifically expressed in neurons; Dyn2, which is ubiquitously expressed; and Dyn3, which is mainly expressed in the brain and testes (Urrutia et al., 1997, Ferguson et al., 2007.The best-studied cellular function of dynamin is its involvement in clathrin-mediated endocytosis (CME; Hinshaw, 2000;Sever et al., 2000;Praefcke and McMahon, 2004). However, dynamin has also been implicated in several other membrane-trafficking events including both caveolae-mediated and clathrin-and caveolin-independent endocytic pathways Oh et al., 1998;Lamaze et al., 2001;Pelkmans et al., 2002), phagocytosis (Gold et al., 1999;Yu et al., 2006), macropinocytosis (Schlunck et al., 2004), and trafficking from the trans-Golgi network (TGN; Jones et al., 1998;Kreitzer et al., 2000;Bonazzi et al., 2005). Because these functions have mostly emerged from studying the effects of overexpression of dominant-negative dynamin mutants, they may reflect indirect or nonspecific effects. Moreover, it is not known whether different dynamin isoforms and/or splice varia...
Dynamin 1 (Dyn1) and Dyn2 are neuronal and ubiquitously expressed isoforms, respectively, of the multidomain GTPase required for clathrin-mediated endocytosis (CME). Although they are 79% identical, Dyn1 and Dyn2 are not fully functionally redundant. Through direct measurements of basal and assembly-stimulated GTPase activities, membrane binding, self-assembly, and membrane fission on planar and curved templates, we have shown that Dyn1 is an efficient curvature generator, whereas Dyn2 is primarily a curvature sensor. Using Dyn1/Dyn2 chimeras, we identified the lipidbinding pleckstrin homology domain as being responsible for the differential in vitro properties of these two isoforms. Remarkably, their in vitro activities were reversed by a single amino acid change in the membrane-binding variable loop 3. Reconstitution of KO mouse embryo fibroblasts showed that both the pleckstrin homology and the Pro/Arg-rich domains determine the differential abilities of these two isoforms to support CME. These domains are specific to classical dynamins and are involved in regulating their activity. Our findings reveal opportunities for fundamental differences in the regulation of Dyn1, which mediates rapid endocytosis at the synapse, vs. Dyn2, which regulates early and late events in CME in nonneuronal cells. T he large atypical GTPase dynamin plays a dual role in clathrin-mediated endocytosis (CME) (1). In nonneuronal cells, dynamin is recruited to nascent clathrin-coated pits (CCPs) (2, 3), where it functions in early rate-limiting stages to monitor the maturation of productive CCPs and the turnover of abortive CCPs (4, 5). At late stages, a burst of dynamin recruitment (6) and self-assembly into collar-like structures at the necks of deeply invaginated CCPs positions dynamin to directly catalyze membrane fission and clathrin-coated vesicle (CCV) release (1,7,8).Caenorhabditis elegans and Drosophila express only a single dynamin isoform, whereas mammals encode three isoforms, each of which is expressed as different splice variants (8). The first identified and most studied isoform, dynamin 1 (Dyn1), is primarily expressed in neurons and is specifically required for rapid endocytosis after synaptic vesicle release (9). Dyn2 is ubiquitously expressed and required for CME in nonneuronal cells (10). Previous overexpression studies showed that dominant negative mutants of either isoform inhibit CME in nonneuronal cells and led to the suggestion that they were functionally redundant (11). However, more recent reconstitution studies in neurons from Dyn1 KO mice (9) or conditional Dyn2 KO mouse fibroblasts (10) showed that Dyn1 and Dyn2 were not fully functionally redundant. Thus, despite sharing 79% sequence identity, Dyn2 could only weakly rescue the specific defect in rapid synaptic vesicle uptake in the neuron (9), whereas Dyn1 was less effective than Dyn2 at supporting CME in Dyn2 null mouse fibroblasts (10). These reciprocal findings suggest a more fundamental mechanistic difference between these two isoforms. The explanatio...
The GTPase dynamin catalyzes the scission of deeply invaginated clathrin-coated pits at the plasma membrane, but the mechanisms governing dynamin-mediated membrane fission remain poorly understood. Through mutagenesis, we have altered the hydrophobic nature of the membrane-inserting variable loop 1 (VL1) of the pleckstrin homology (PH) domain of dynamin-1 and demonstrate that its stable insertion into the lipid bilayer is critical for high membrane curvature generation and subsequent membrane fission. Dynamin PH domain mutants defective in curvature generation regain function when assayed on precurved membrane templates in vitro, but they remain defective in the scission of clathrin-coated pits in vivo. These results demonstrate that, in concert with dynamin self-assembly, PH domain membrane insertion is essential for fission and vesicle release in vitro and for clathrin-mediated endocytosis in vivo.
Skeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival. Despite its ubiquitous expression, mutations of Dyn2 are associated with two tissue-specific congenital disorders: centronuclear myopathy (CNM) and Charcot-Marie-Tooth (CMT) neuropathy. Several disease models for CNM-Dyn2 have been established to study its pathogenic mechanism; yet the cellular and biochemical effects of these mutations are still not fully understood. Here we comprehensively compared the biochemical activities of disease-associated Dyn2 mutations and found that CNM-Dyn2 mutants are hypermorphic with enhanced membrane fission activity, whereas CMT-Dyn2 is hypomorphic. More importantly, we found that the expression of CNM-Dyn2 mutants does not impair CME in myoblast, but leads to T-tubule fragmentation in both C2C12-derived myotubes and Drosophila body wall muscle. Our results demonstrate that CNM-Dyn2 mutants are gain-of-function mutations, and their primary effect in muscle is T-tubule disorganization, which explains the susceptibility of muscle to Dyn2 hyperactivity.
Dynamin exhibits a high basal rate of GTP hydrolysis that is enhanced by self-assembly on a lipid template. Dynamin's GTPase effector domain (GED) is required for this stimulation, though its mechanism of action is poorly understood. Recent structural work has suggested that GED may physically dock with the GTPase domain to exert its stimulatory effects. To examine how these interactions activate dynamin, we engineered a minimal GTPase-GED fusion protein (GG) that reconstitutes dynamin's basal GTPase activity and utilized it to define the structural framework that mediates GED's association with the GTPase domain. Chemical cross-linking of GG and mutagenesis of full-length dynamin establishes that the GTPase-GED interface is comprised of the N-and C-terminal helices of the GTPase domain and the C-terminus of GED. We further show that this interface is essential for structural stability in full-length dynamin. Finally, we identify mutations in this interface that disrupt assembly-stimulated GTP hydrolysis and dynamin-catalyzed membrane fission in vitro and impair the late stages of clathrin-mediated endocytosis in vivo. These data suggest that the components of the GTPase-GED interface act as an intramolecular signaling module, which we term the bundle signaling element, that can modulate dynamin function in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.