Histone demethylase UTX mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish a mechanistic switch to activate large sets of genes. Mutation of Utx has recently been shown to be associated with Kabuki syndrome, a rare congenital anomaly syndrome with dementia. However, its biological function in the brain is largely unknown. Here, we observe that deletion of Utx results in increased anxiety-like behaviors and impaired spatial learning and memory in mice. Loss of Utx in the hippocampus leads to reduced long-term potentiation and amplitude of miniature excitatory postsynaptic current, aberrant dendrite development and defective synapse formation. Transcriptional profiling reveals that Utx regulates a subset of genes that are involved in the regulation of dendritic morphology, synaptic transmission, and cognition. Specifically, Utx deletion disrupts expression of neurotransmitter 5-hydroxytryptamine receptor 5B (Htr5b). Restoration of Htr5b expression in newborn hippocampal neurons rescues the defects of neuronal morphology by Utx ablation. Therefore, we provide evidence that Utx plays a critical role in modulating synaptic transmission and cognitive behaviors. Utx cKO mouse models like ours provide a valuable means to study the underlying mechanisms of the etiology of Kabuki syndrome.
Rotaviruses, double-stranded, non-enveloped RNA viruses, are a global health concern, associated with acute gastroenteritis and secretory-driven watery diarrhoea, especially in infants and young children. Conventionally, rotavirus is primarily viewed as a pathogen for intestinal enterocytes. This notion is challenged, however, by data from patients and animal models documenting extra-intestinal clinical manifestations and viral replication following rotavirus infection. In addition to acute gastroenteritis, rotavirus infection has been linked to various neurological disorders, hepatitis and cholestasis, type 1 diabetes, respiratory illness, myocarditis, renal failure and thrombocytopenia. Concomitantly, molecular studies have provided insight into potential mechanisms by which rotavirus can enter and replicate in non-enterocyte cell types and evade host immune responses. Nevertheless, it is fair to say that the extra-intestinal aspect of the rotavirus infectious process is largely being overlooked by biomedical professionals, and there are gaps in the understanding of mechanisms of pathogenesis. Thus with the aim of increasing public and professional awareness we here provide a description of our current understanding of rotavirusrelated extra-intestinal clinical manifestations and associated molecular pathogenesis. Further understanding of the processes involved should prove exceedingly useful for future diagnosis, treatment and prevention of rotavirus-associated disease.
Ganpu tea, an emerging pu-erh compound tea, which is cofermented with the peel of Citrus reticulata “Chachi,” has been widely favored by Chinese consumers due to its potential health effects and distinct flavor and taste. So far, the influence of this cofermentation procedure on the chemical profile of pu-erh tea has barely been addressed yet. In this work, an ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry (UHPLC-QE Orbitrap MS)-based qualitative and quantitative method combined with multivariate analysis was conducted to comprehensively investigate the chemical changes in pu-erh tea after cofermented with Citrus peel. A total of 171 compounds were identified based on a three-level strategy, among which seven phenolic acids, 11 flavan-3-ols, and 27 flavonoids and flavonoid glycosides were identified from pu-erh tea for the first time. Eighty-nine main constituents were selected for further quantitative analysis using a validated method. Both the principal component analysis (PCA) of untargeted metabolomics and orthogonal partial least squares discriminant analysis (OPLS-DA) models of targeted components revealed the significant chemical profile disparity between the raw pu-erh tea and Ganpu tea. It showed that Citrus tea cofermentation process significantly decreased the total contents of phenolic acids, flavan-3-ols, and flavonoid aglycones, while most of the quercetin glycosides and myricetin glycosides as well as the vitexin were significantly increased. In addition, hesperidin, a flavonoid glycoside only existed in Citrus, was first found in pu-erh tea after cofermented with Citrus. This study clearly profiled the chemical composition and content changes of pu-erh tea after cofermented with Citrus peel, which revealed that Citrus tea cofermentation process further accelerated the fermentation of pu-erh tea and improved the unique flavor of tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.