The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical characteristics of the precision-machined surface. The paper is concerned with the effect of the roughness of the machined surface on the dispersion of surface acoustic waves propagating in the precision-machined surface which indicates mechanical characteristics of the machined surface. The finite element method (FEM) is employed by establishing a series of models with different roughness Ra value to analyze influences from different roughness Ra value on surface acoustic wave dispersion. The models are established by applying a combined method based on fractal theory and wavelet analysis. The simulation results showed that the roughness of machined surface will cause the dispersion of surface acoustic wave propagation, the effect varies with the different roughness Ra values. A critical Ra value influencing on the surface acoustic wave propagation exists. Accordingly, that the factor of roughness should be considered in advance or not, the situation can be determined through studying and determining the critical roughness Ra value above mentioned. Consequently, the study has the important meaning regarding the detection for mechanical characteristics of the machined surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.