Recent investigation of microRNAs on chronic pain has developed a breakthrough in neuropathic pain management. In this study, decreased expression of miR-30a-3p was reported using qRT-PCR analysis and loss of miR-30a-3p promoted neuropathic pain progression in sciatic nerve chronic constrictive injury rats through determining the pain threshold. We predicted miR-30a-3p could target E-cadherin transcriptional activator (EP300) via bioinformatics analysis. Meanwhile, we found that brain-derived neurotrophic factor (BDNF) is involved in neuropathic pain. Here, we exhibited that EP300 epigenetically up-regulated BDNF via enhancing acetylated histone H3 and H4 on the promoter. For another, miR-30a-3p was able to modify the level of BDNF and acetylated histone H3 and H4. Loss of miR-30a-3p enhanced EP300 and BDNF colocalization in CCI rats. Subsequently, it was shown that increased EP300 induced neuropathic pain by an enhancement of neuronal BDNF level in vivo. To sum up, it was revealed that epigenetic modification of BDNF promoted neuropathic pain via EP300 induced by miR-30a-3p in CCI rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.