In this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.
The space-based gravitational wave detection programs, like the Laser Interferometer Space Antenna (LISA) or the Taiji program, aim to detect gravitational waves in space with a triangular constellation of three spacecraft. The unavoidable jitters of the spacecraft and the pointing will couple with the misalignment of the interfering beams into the longitudinal path length readout. This effect is called tilt-to-length (TTL) coupling, which is one of the keys to achieving the required measuring accuracy of 1 p m / H z . In terms of two phase definitions (the LISA Pathfinder (LPF) signal and the Average Phase (AP) signal), we implement the comprehensive theoretical analysis concerning the effect of aberrations on TTL coupling noise. In addition, we analytically derive that the proper lateral shift of the interfering beams relative to the detector can partly cancel out the TTL noise coupled with aberrations, especially coma and trefoil aberrations for the AP signal. Based on the above results, the meaningful guidance can be provided for the design and construction of the optical system in LISA or Taiji.
Space-based gravitational wave detection programs, like the Laser Interferometer Space Antenna or the Taiji program, aim to detect gravitational waves in space with interferometric arms of millions of kilometers. In the process of far-field propagation, the exit wavefront error of the transmitting telescope will couple with the unavoidable pointing between two spacecraft to generate an optical path noise. In this paper, we firstly build a comprehensive theoretical model concerning the effect of 3rd ∼ 7 t h aberrations on this coupling and compare the coupling coefficients of different aberrations. Then, we use this model to analyze the far-field optical path noise of the exit wavefront of a built prototype telescope for the Taiji program. Finally, we take advantage of the Monte Carlo algorithm of the model for investigating the effect of the different wavefront qualities on optical path noise. The results can provide meaningful guidance for the construction of the subsequent telescope.
The laser acquisition-pointing technique is one of the most important techniques for space gravitational wave detection missions, like the Taiji program and the LISA (Laser Interferometer Space Antenna) program. The laser acquisition system suppresses the laser deviation angle to 1 µrad at the receiving aperture. Corresponding to 80 times of telescope magnification, the acquisition accuracy should reach 80 µrad at the acquisition camera. In order to verify the feasibility of the laser acquisition scheme, a laser acquisition ground simulation experimental system is designed and constructed. The experimental system simulates the actual acquisition process of the Taiji from three aspects: optical path, acquisition accuracy and acquisition scanning process. In the experiment, the coupling between the laser acquisition system and the laser pointing system is considered by introducing the DWS (Differential Wave-front Sensing) technique to calibrate the reference position of the acquisition camera and read out the acquisition precision. Due to limited beam propagation distance in the ground experiment, the in-flat top properties of the transmitting beam will greatly affect the acquisition precision. Based on the analysis of the influence, an improved acquisition ground simulation scheme is introduced. The experimental results indicate that the experimental system can achieve the acquisition accuracy of sub-10 µrad magnitude at the acquisition camera. The experimental system realizes methodological demonstration of the acquisition scheme. The results offer the experimental foundation and theoretical basis for the acquisition system of the Taiji/LISA program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.