The priority of the quality improving of machine parts, providing their operational characteristics and specified reliability parameters during the design of oil and gas and mechenical engineering equipment was established. The dominance of the criterion of technological inheritability for all stages of the Life Cycle of a Part was noted. The current state of providing of the quality parameters of a part and its operational characteristics by means of the technological inheritabilty was analyzed. Algorithms for technological providing of quality parameters, operational characteristics and reliability indicators of parts are considered. Approaches for estimation of the degree of material degradation, worked-out and anticipated (residual) part lifetime were described. Object, subject and research tasks were installed. The deformation and energy criteria for evaluation of degree of material damageability are presented. The specificity of SADT-technology for the analysis and synthesis of the technological processes is described and the advantages, disadvantages, scope of its application are noted. A systematic approach for the joint using of continuum media mechanics, continuous damage mechanics and fracture mechanics is proposed. During the study of the process of metal plastic molding in a certain focus of deformation the properties of the surface layer are considered as a the result of this molding. And the process of part exploitation are considered as the continuing the change of these properties. That approach allows to use the parameters of the deformation mechanics as the degree of shear deformation and the degree of exhaustion of the plasticity reserve for the analysis of physical phenomena. The Life Cycle of a Part is analyzed as an integrated process of exhaustion of the metal plasticity stock under the influence of the specified load programs in according to the technological inheritability of its properties. An advanced structural model of the Life Cycle of a Part by means of the technological inheritability mechanics is offered.
The priority of research into modern information systems for controlling technological processes of product manufacturing and their introduction into the practice of machine-building enterprises is established. Described the object-oriented and functionally-oriented principles of designing technological processes in the manufacture of machine parts and the area of their effective use. Algorithms of initial product parameters formation when implementing object-oriented and function-oriented principles of technological processes design are analyzed. A generalized algorithm of a CAF-system functioning in the structure of an integrated design-engineering preproduction is presented. The conditions of shaping product parameters taking into account the influence of an integrated subsystem of design-engineering preparation of machine-building production and technological subsystems: machine, fixture, tool, workpiece are analyzed. The main provisions of the system approach to the study of the formation of the output parameters of products at the stage of their creation in life cycles during the implementation of function-oriented design principles are formulated. The conditions for the realization of physical processes from the position of the synergetic approach in the study of technical systems are analyzed. A mathematical model for predicting the probability of forming a workpiece blank without defects at the stage of its creation during the implementation of the technological process of product manufacturing was developed. Numerous solutions of the mathematical model are given, which determine the degree of influence of technological subsystems on ensuring output parameters of the product. Using a synergetic approach, the process of forming the initial parameters of the product as a result of interaction between the integrated subsystem of design-engineering preparation of engineering production and technological subsystems: machine, device, tool, workpiece with the provision of quality control parameters of the product using the CAF subsystem and a subsystem of implementation of control operations. Further research will concern the development of algorithms for determining the solutions of mathematical models when designing technological processes for the manufacture of machine parts using a function-oriented design principle while ensuring the regulated quality parameters of their executive surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.