Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. A phylogenetic analysis of Bdellovibrio-and-like organisms (BALOs) was performed. It was based on the characterization of 71 strains and on all consequent 16S rRNA gene sequences available in databases, including clones identified by data-mining, totalling 120 strains from very varied biotopes. Amplified rDNA restriction analysis (ARDRA) accurately reflected the diversity and phylogenetic affiliation of BALOs, thereby providing an efficient screening tool. Extensive phylogenetic analysis of the 16S rRNA gene sequences revealed great diversity within the Bdellovibrio (>14 % divergence) and Bacteriovorax (>16 %) clades, which comprised nine and eight clusters, respectively, exhibiting more than 3 % intra-cluster divergence. The clades diverged by more than 20 %. The analysis of conserved 16S rRNA secondary structures showed that Bdellovibrio contained motifs atypical of the d-Proteobacteria, suggesting that it is ancestral to Bacteriovorax. While none of the Bdellovibrio strains were of marine origin, Bacteriovorax included separate soil/freshwater and marine-specific groups. On the basis of their extensive diversity and the large distance separating the groups, it is proposed that Bacteriovorax starrii be placed into a new genus, Peredibacter gen. nov., with Peredibacter starrii A3.12 T (=ATCC 15145 T =NCCB 72004 T ) as its type strain. Also proposed is a redefinition of the Bdellovibrio and the Bacteriovorax-Peredibacter lineages as two different families, i.e. 'Bdellovibrionaceae' and a new family, Bacteriovoracaceae. Also, a re-evaluation of oligonucleotides targeting BALOs is presented, and the implications of the large diversity of these organisms and of their distribution in very different environments are discussed. Yaacov Davidov and Edouard Jurkevitch INTRODUCTIONThe obligate Gram-negative predatory bacteria belonging to the Bdellovibrio-and-like organisms (BALOs) are ubiquitously found in soil, in association with plant roots, in sea water, fresh water, biofilms and sewage Varon & Shilo, 1980;Williams et al., 1995). They were recently detected in the faeces of animals and humans (Schwudke et al., 2001). BALOs exhibit a unique biphasic life cycle in which a free-swimming cell infects the periplasmic space of a Gram-negative prey. Thereafter, the intracellular predator grows into a filament from which, at a later stage, progeny cells differentiate, lyse the host cell and start a new cycle (Jurkevitch, 2000). The molecular basis of this biphasic cycle and the determinants of the prey range (which varies greatly between BALO isolates) are unknown.BALOs consist of two poorly defined genera, Bdellovibrio and Bacteriovorax (Baer et al., 2000), which are affiliated with the d-Proteobacteria (Woese, 1987). Recently, the classification of these two genera in the family '...
Bdellovibrio-and-like organisms (BALOs) are widespread obligatory predators of other Gram-negative bacteria. Their detection by culture-dependent methods is complicated as their replication is totally dependent upon the availability of an appropriate prey. Because BALOs do not form numerically dominant groups within microbial communities, non-specific culture-independent tools also generally fail to detect them. We designed sets of 16S rRNA primers that specifically target BALOs. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined, yielding partial 16S rDNA sequences. This simple method that allows specific in situ culture-independent detection of BALOs was applied to the soil environment. Bdellovibrio-and-like organisms were also isolated from the same soil and the phylogeny and prey range of the isolates analysed. Seventeen isolates retrieved using five different potential preys exhibited eight different spectra of prey utilization and formed nine operational taxonomic units (OTUs). These OTUs were affiliated with the Bdellovibrionaceae, Bacteriovorax, Peredibacter or Micavibrio, i.e. the known BALO groups. In comparison, 15 OTUs including 10 that were not detected by the culture-dependent approach were obtained using the specific primers in a PCR-DGGE approach. The occurrence of a complex BALO community suggests that predation occurs on a much wider range of prey than can be detected by the classical culture-dependent technique.
The life cycle, prey range and taxonomic status of a Bdellovibrio -like organism, strain JSST, were studied. Strain JSST was isolated from sewage in London, Ontario, Canada, in enrichment culture with Caulobacter crescentus prey cells. During predation, this strain remained attached to the outside of a stalked C. crescentus cell. No periplasmic growth stage was observed and no bdelloplast was formed. The stalked cells of C. crescentus retained their shape and, after predation, were devoid of cytoplasmic content, as shown by transmission electron microscopy. A periplasmic growth stage has been a definitive character in the description of members of the genera Bdellovibrio , Bacteriovorax , Bacteriolyticum and Peredibacter . This is the first description of an epibiotic predator in this group of prokaryotic predators. The G+C content of the genomic DNA of strain JSST was 46.1 mol%. 16S rRNA gene sequence analysis showed that this strain was related to Bdellovibrio bacteriovorus strains HD100T, 109J, 114 and 127 (90–93 % similarity). Phylogenetic analysis based on 16S rRNA gene sequences grouped strain JSST with the Bdellovibrio cluster, but at a distance from other Bdellovibrio isolates. On the basis of features of the life cycle and phylogenetic data, it was concluded that strain JSST merits classification as the type strain of a novel species, for which the name Bdellovibrio exovorus sp. nov. is proposed (type strain JSST = ATCC BAA-2330T = DSM 25223T).
Bdellovibrio-and-like organisms (BALOs) are peculiar, ubiquitous, small-sized, highly motile Gram-negative bacteria that are obligatory predators of other bacteria. Typically, these predators invade the periplasm of their prey where they grow and replicate. To date, BALOs constitute two highly diverse families affiliated with the delta-proteobacteria class. In this study, Micavibrio spp., a BALO lineage of epibiotic predators, were isolated from soil. These bacteria attach to digest and grow at the expense of other prokaryotes, much like other BALOs. Multiple phylogenetic analyses based on six genes revealed that they formed a deep branch within the alpha-proteobacteria, not affiliated with any of the alpha-proteobacterial orders. The presence of BALOs deep among the alpha-proteobacteria suggests that their peculiar mode of parasitism maybe an ancestral character in this proteobacterial class. The origin of the mitochondrion from an alpha-proteobacterium endosymbiont is strongly supported by molecular phylogenies. Accumulating data suggest that the endosymbiont's host was also a prokaryote. As prokaryotes are unable to phagocytose, the means by which the endosymbiont gained access into its host remains mysterious. We here propose a scenario based on the BALO feeding-mode to hypothesize a mechanism at play at the origin of the mitochondrial endosymbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.