We present a complementary resource for trait fine-mapping in tomato to those based on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia-lyase and cystathionine gamma-lyase were then tested and validated in F populations and via agroinfiltration-based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.