This paper presents a novel algorithm for extracting the pose and dimensions of cargo boxes in a large measurement space of a robotic gantry, with sub-centimetre accuracy using multiple low cost RGB-D Kinect sensors. This information is used by a bin-packing and pathplanning software to build up a pallet. The robotic gantry workspaces can be up to 10 m in all dimensions, and the cameras cannot be placed top-down since the components of the gantry actuate within this space. This presents a challenge as occlusion and sensor noise is more likely.This paper presents the system integration components on how point cloud information is extracted from multiple cameras and fused in realtime, how primitives and contours are extracted and corrected using RGB image features, and how cargo parameters from the cluttered cloud are extracted and optimized using graph based segmentation and particle filter based techniques. This is done with sub-centimetre accuracy irrespective of occlusion or noise from cameras at such camera placements and range to cargo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.