The topological insulator is a fundamentally new phase of matter, with the striking property that the conduction of electrons occurs only on its surface, not within the bulk, and that conduction is topologically protected. Topological protection, the total lack of scattering of electron waves by disorder, is perhaps the most fascinating
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Topological insulators are phases of matter characterized by topological edge states that propagate in a unidirectional manner that is robust to imperfections and disorder. These attributes make topological insulator systems ideal candidates for enabling applications in quantum computation and spintronics. We propose a concept that exploits topological effects in a unique way: the topological insulator laser. These are lasers whose lasing mode exhibits topologically protected transport without magnetic fields. The underlying topological properties lead to a highly efficient laser, robust to defects and disorder, with single-mode lasing even at very high gain values. The topological insulator laser alters current understanding of the interplay between disorder and lasing, and at the same time opens exciting possibilities in topological physics, such as topologically protected transport in systems with gain. On the technological side, the topological insulator laser provides a route to arrays of semiconductor lasers that operate as one single-mode high-power laser coupled efficiently into an output port.
Topological insulators are insulating in the bulk but feature conducting states on their surfaces. Standard methods for probing their topological properties largely involve probing the surface, even though topological invariants are defined via the bulk band structure. Here, we utilize non-hermiticy to experimentally demonstrate a topological transition in an optical system, using bulk behavior only, without recourse to surface properties. This concept is relevant for a wide range of systems beyond optics, where the surface physics is difficult to probe.The notion of topological protection of electronic properties was first explored by Thouless and coworkers [1], who demonstrated that the Hall conductance of a two-dimensional electron gas (with Fermi energy placed within a bulk gap) is proportional to an integer-valued topological quantity. The global nature of the topological quantity introduces a striking robustness: small changes to the system (including the addition of disorder) have almost no effect on the Hall conductance [2]. Non-trivial topology implies the presence of conducting surface states (via the "bulk-edge correspondence principle"), which play a central role in many topological phenomena. A subsequent resurgence of interest in topological phenomena began with the prediction and observation of the quantum spin Hall effect [3][4][5], followed by the prediction [6,7] and observation [8] of an analogue for microwave photons. This scheme relies on the large magnetic response occurring in the microwave regime, which is not generalizable to
Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed-because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene-a photonic honeycomb lattice-to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.