Highlightsd Retrons are preferentially located in defense islands d Retrons, together with their effector genes, protect bacteria from phages d Protection from phage is mediated by abortive infection
The bacterium Bacillus subtilis produces the DNA integrity scanning protein (DisA), a checkpoint protein that delays sporulation in response to DNA damage. DisA scans the chromosome and pauses at sites of DNA lesions. Structural analysis showed that DisA synthesizes the small molecule cyclic diadenosine monophosphate (c-di-AMP). Here, we demonstrate that the intracellular concentration of c-di-AMP rises markedly at the onset of sporulation in a DisA-dependent manner. Furthermore, exposing sporulating cells to DNA-damaging agents leads to a global decrease in the level of this molecule. This drop was associated with stalled DisA complexes that halt c-di-AMP production and with increased levels of the c-di-AMP-degrading enzyme YybT. Reduced c-di-AMP levels cause a delay in sporulation that can be reversed by external supplementation of the molecule. Thus, c-di-AMP acts as a secondary messenger, coupling DNA integrity with progression of sporulation.
In response to DNA damage, cells activate checkpoint signaling cascades to control cell-cycle progression and elicit DNA repair in order to maintain genomic integrity. The sensing and repair of lesions is critical for Bacillus subtilis cells entering the developmental process of sporulation as damaged DNA may prevent the cells from completing spore morphogenesis. We report the identification of the protein DisA (DNA integrity scanning protein, annotated YacK), which is required to delay the initiation of sporulation in response to chromosomal damage. DisA is a nonspecific DNA binding protein that forms a single focus, which moves rapidly within the bacterial cell, pausing at sites of DNA damage. We propose that the DisA focus scans along the chromosomes searching for lesions. Upon encountering a lesion, DisA delays entry into sporulation until the damage is repaired.
Finding bacterial cellular targets for developing novel antibiotics has become a major challenge in fighting resistant pathogenic bacteria. We present a novel compound, Relacin, designed to inhibit (p)ppGpp production by the ubiquitous bacterial enzyme RelA that triggers the Stringent Response. Relacin inhibits RelA in vitro and reduces (p)ppGpp production in vivo. Moreover, Relacin affects entry into stationary phase in Gram positive bacteria, leading to a dramatic reduction in cell viability. When Relacin is added to sporulating Bacillus subtilis cells, it strongly perturbs spore formation regardless of the time of addition. Spore formation is also impeded in the pathogenic bacterium Bacillus anthracis that causes the acute anthrax disease. Finally, the formation of multicellular biofilms is markedly disrupted by Relacin. Thus, we establish that Relacin, a novel ppGpp analogue, interferes with bacterial long term survival strategies, placing it as an attractive new antibacterial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.