To effectively diagnose and monitor the vertical collusion in construction project bidding, this paper developed a comprehensive evaluation model with deep neural network and transfer learning. By this model, the collusion characteristics of bidders, tenderers, and bid evaluation experts were mined from limited data set hidden and collusion tendency was evaluated. Firstly, 18 evaluation indicators were established from literature review, court file summarization, typical case analysis, and expert consultation. Then, a comprehensive evaluation model was developed with the deep neural network and transfer learning. Finally, the model was trained and tested with the collected data set. The test results showed that the developed model achieved 87.3% identification accuracy in collusion tendency evaluation of different subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.