In recent years, recommender systems have advanced rapidly, where embedding learning for users and items plays a critical role. A standard method learns a unique embedding vector for each user and item. However, such a method has two important limitations in realworld applications: 1) it is hard to learn embeddings that generalize well for users and items with rare interactions; and 2) it may incur unbearably high memory costs when the number of users and items scales up. Existing approaches either can only address one of the limitations or have flawed overall performances. In this paper, we propose Clustered Embedding Learning (CEL) as an integrated solution to these two problems. CEL is a plug-and-play embedding learning framework that can be combined with any differentiable feature interaction model. It is capable of achieving improved performance, especially for cold users and items, with reduced memory cost. CEL enables automatic and dynamic clustering of users and items in a top-down fashion, where clustered entities jointly learn a shared embedding. The accelerated version of CEL has an optimal time complexity, which supports efficient online updates. Theoretically, we prove the identifiability and the existence of a unique optimal number of clusters for CEL in the context of nonnegative matrix factorization. Empirically, we validate the effectiveness of CEL on three public datasets and one business dataset, showing its consistently superior performance against current state-of-the-art methods. In particular, when incorporating CEL into the business model, it brings an improvement of +0.6% in AUC, which translates into a significant revenue gain; meanwhile, the size of the embedding table gets 2650 times smaller. 1
Item representation learning is crucial for search and recommendation tasks in e-commerce. In e-commerce, the instances (e.g., items, users) in different domains are always related. Such instance relationship across domains contains useful local information for transfer learning. However, existing transfer learning based approaches did not leverage this knowledge. In this paper, we report on our experience designing and deploying Prior-Guided Transfer Learning (PGTL) to bridge this gap. It utilizes the instance relationship across domains to extract prior knowledge for the target domain and leverages it to guide the fine-grained transfer learning for e-commerce item representation learning tasks. Rather than directly transferring knowledge from the source domain to the target domain, the prior knowledge can serve as a bridge to link both domains and enhance knowledge transfer, especially when the domain distribution discrepancy is large. Since its deployment on the Taiwanese portal of Taobao in Aug 2020, PGTL has significantly improved the item exposure rate and item click-through rate compared to previous approaches
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.