is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. a b s t r a c tNowadays, medium density fibreboard (MDF) composite wood is more and more used in the furniture industry to replace bulk wood such as oak, beech, etc. Indeed, this material presents good mechanical properties, is easy to machine, homogeneous, exists in different dimensions (thickness, etc.), is cheaper than bulk wood and finally can be covered by an adhesive decorative coat. Nevertheless, even if this material is homogeneous, it is abrasive enough to tend to the breakdown of the conventional carbide tools employed during its routing process. That is why it is necessary to improve the wear resistance of these tools. One solution is to protect them with a hard coating.The present study deals with the development of ternary CrAlN hard layers obtained by PVD method on carbide tools employed in second transformation of wood. CrAlN coatings have been optimized and then applied on carbide tools in routing of three types of MDF: standard, waterproof and fireproof. The aim of these wood machining tests was first to define the ability to be machined of the three kinds of MDF and second to compare the effectiveness of CrAlN coatings during the routing tests of these materials.
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. The CrAlN coatings are a good alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on silicon (100) by PVD (Physical vapor deposition) technique from two targets (chromium and aluminum) in a reactive nitrogen atmosphere at aluminum applied negative voltage (À300, À500, À700 and À900 V). The composition, structural, mechanical and thermal properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and the ''Mirage effect'' experiments. The X-ray diffraction (XRD) data show that in general CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1) and (2 0 0) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing aluminum proportion the coatings became more compact and denser and their increased correspondingly, showing a maximum hardness of about 36 GPa (30 at% of Al) which is higher than that of CrN. Moreover, the results in this work demonstrate that the variation of aluminum fraction alter the resulting columnar grain morphology and porosity of the coatings. However, the thermal properties are greatly affected by these morphological alterations. The correlation between aluminum fraction in CrAlN coatings and its thermal properties revealed that the conductivity and the diffusivity are influenced primarily by size and shape distribution of the pores and secondarily by a decrease of the stitch parameter dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.