ObjectiveTo demonstrate the incremental benefit of using free text data in addition to vital sign and demographic data to identify patients with suspected infection in the emergency department.MethodsThis was a retrospective, observational cohort study performed at a tertiary academic teaching hospital. All consecutive ED patient visits between 12/17/08 and 2/17/13 were included. No patients were excluded. The primary outcome measure was infection diagnosed in the emergency department defined as a patient having an infection related ED ICD-9-CM discharge diagnosis. Patients were randomly allocated to train (64%), validate (20%), and test (16%) data sets. After preprocessing the free text using bigram and negation detection, we built four models to predict infection, incrementally adding vital signs, chief complaint, and free text nursing assessment. We used two different methods to represent free text: a bag of words model and a topic model. We then used a support vector machine to build the prediction model. We calculated the area under the receiver operating characteristic curve to compare the discriminatory power of each model.ResultsA total of 230,936 patient visits were included in the study. Approximately 14% of patients had the primary outcome of diagnosed infection. The area under the ROC curve (AUC) for the vitals model, which used only vital signs and demographic data, was 0.67 for the training data set, 0.67 for the validation data set, and 0.67 (95% CI 0.65–0.69) for the test data set. The AUC for the chief complaint model which also included demographic and vital sign data was 0.84 for the training data set, 0.83 for the validation data set, and 0.83 (95% CI 0.81–0.84) for the test data set. The best performing methods made use of all of the free text. In particular, the AUC for the bag-of-words model was 0.89 for training data set, 0.86 for the validation data set, and 0.86 (95% CI 0.85–0.87) for the test data set. The AUC for the topic model was 0.86 for the training data set, 0.86 for the validation data set, and 0.85 (95% CI 0.84–0.86) for the test data set.ConclusionCompared to previous work that only used structured data such as vital signs and demographic information, utilizing free text drastically improves the discriminatory ability (increase in AUC from 0.67 to 0.86) of identifying infection.
We introduce the first large-scale corpus for long-form question answering, a task requiring elaborate and in-depth answers to openended questions. The dataset comprises 270K threads from the Reddit forum "Explain Like I'm Five" (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline. However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement. 1
Challenging problems such as open-domain question answering, fact checking, slot filling and entity linking require access to large, external knowledge sources. While some models
We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway net work over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.