The purpose of this paper is the inter-turn short circuit fault Modeling and detection for the sensorless input-output linearization control of the permanent magnet synchronous motor (PMSM) based on the Extended Kalman Filter observer (EKF). The fault detection procedures are based through the estimation of the stator resistance variation by the Extended Kalman Filter observer and the Fast Fourier Transformer (FFT) for the stationary state, and the Discrete Wavelet Transform (DWT) analysis of the electrical characteristics of the PMSM, for the non-stationary state. However, the FFT spectral analysis and the DWT is a useful solution to ensure that the variation of the stator resistance estimation is caused by the inter-turn short circuit fault. The effectiveness of the sensorless control and the fault detection techniques are presented in a simulation in MATLAB/Simulink environment.
In this paper, a simple dynamic model for a PMSM with inter-turn winding fault in closed loop. The control of the PMSM is assured by the input-output control. The objective of this paper is the detection and location of the stator winding fault severity of PMSM. To achieve this objective, a mathematical model that can describe both healthy and fault conditions is developed. Simulation results match the observations of this type of fault in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.