Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning outbreaks due to enterotoxin-producing S. aureus strains which occurred in 2013 in Belgium are described. The outbreaks occurred in an elderly home, at a barbecue event and in a kindergarten and involved 28, 18, and six cases, respectively. Various food leftovers contained coagulase positive staphylococci (CPS). Low levels of staphylococcal enterotoxins ranging between 0.015 ng/g and 0.019 ng/g for enterotoxin A (SEA), and corresponding to 0.132 ng/g for SEC were quantified in the food leftovers for two of the reported outbreaks. Molecular typing of human and food isolates using pulsed-field gel electrophoresis (PFGE) and enterotoxin gene typing, confirmed the link between patients and the suspected foodstuffs. This also demonstrated the high diversity of CPS isolates both in the cases and in healthy persons carrying enterotoxin genes encoding emetic SEs for which no detection methods currently exist. For one outbreak, the investigation pointed out to the food handler who transmitted the outbreak strain to the food. Tools to improve staphylococcal food poisoning (SFP) investigations are presented.
Staphylococcal food poisoning is caused by enterotoxins excreted into foods by strains of staphylococci. Commission Regulation 1441/2007 specifies thresholds for the presence of these toxins in foods. In this article we report on the progress towards reference materials (RMs) for Staphylococcal enterotoxin A (SEA) in cheese. RMs are crucial to enforce legislation and to implement and safeguard reliable measurements. First, a feasibility study revealed a suitable processing procedure for cheese powders: the blank material was prepared by cutting, grinding, freeze-drying and milling. For the spiked material, a cheese-water slurry was spiked with SEA solution, freeze-dried and diluted with blank material to the desired SEA concentration. Thereafter, batches of three materials (blank; two SEA concentrations) were processed. The materials were shown to be sufficiently homogeneous, and storage at ambient temperature for 4weeks did not indicate degradation. These results provide the basis for the development of a RM for SEA in cheese.
Aims The aim of this study was to characterize Staphylococcusaureus isolates of food origin (dairy and meat products, pastries and sandwiches) determining the carriage in enterotoxin genes and the antimicrobial resistance pheno/genotypes. Methods and results A total of 300 food samples were collected and analysed for the detection of S. aureus. The presence of enterotoxin genes was investigated by multiplex PCRs. Resistance of isolates to 11 antimicrobials was determined using disc diffusion method and molecular characterization of methicillin‐resistant S. aureus was carried out by spa typing and multilocus sequence typing. Overall, 51 out of 300 samples (17%) were contaminated with S. aureus, and 104 isolates were recovered. In all, 65 of these isolates (62·5%) harboured one or more genes encoding for staphylococcal enterotoxins, being seg and sei the most observed genes. The highest resistance profile was ascribed to penicillin G (95·19%). Five isolates were methicillin‐resistant (MRSA) harbouring the mecA gene. All MRSA isolates belonged to the sequence type ST5 and to two different spa types (t450 and t688); the MRSA‐t450 isolate carried the scn gene (specific marker of the immune evasion cluster system), but the four MRSA‐t688 isolates were scn negative. The MRSA isolates carried enterotoxin genes but were negative for the genes of the Panton Valentine leukocidine (lukF/S‐PV). Conclusion The presence of enterotoxigenic S. aureus isolates, including MRSA, in food samples can represent a risk for public health. Significance and Impact of this Study This work describes the molecular characteristics of MRSA strains isolated from foods in Algeria and it can contribute to an extended database concerning the S. aureus isolated from food origin.
On August 28, 2015, a staphylococcal food poisoning outbreak occurred in Umbria, Italy, affecting 24 of the 42 customers who had dinner at a local restaurant. About 3 h after ingesting a variety of foods, the customers manifested gastrointestinal symptoms. Within 24 h of notification from the hospital emergency department, Sanitary Inspectors of the local Public Health Unit performed an epidemiological investigation. A retrospective cohort study was conducted among the customers. Food and environmental samples were collected. Due to the rapid onset of symptoms (vomiting, diarrhea), the food samples were analyzed for the presence of toxigenic bacteria and their toxins; nasopharyngeal swabs were collected from the waiters and cooks. Among the food tested, high levels of coagulase-positive staphylococci (CPS) (3.4 × 108 CFU/g) and staphylococcal enterotoxins (2.12 ng SEA/g) were only detected in the Chantilly cream dessert. CPS were also detected on the surface of a kitchen table (10 CFU/swab), and five food handlers were positive for Staphylococcus aureus. In total, five enterotoxigenic S. aureus isolates were recovered from three food handlers, a kitchen surface, and the Chantilly cream dessert. These isolates were further characterized by biotyping, pulsed-field gel electrophoresis, and multiplex polymerase chain reaction assays for the detection of eleven enterotoxin encoding genes (sea, seb, sec, sed, see, seg, seh, sei, sej, sep, and ser) and three genes involved in antibiotic resistance (mecA, mecC, and mupA). Three sea-positive strains, isolated from the dessert, environment, and one of the cooks, had the same pulsed-field gel electrophoresis profile and belonged to the human biotype, suggesting that the contamination causing the outbreak most likely originated from a food handler. Moreover, improper storage of the dessert, at room temperature for about 5 h, permitted microbial growth and SEA production. This study underlines the importance of both laboratory evidence and epidemiological data for outbreak investigation.
Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.