Traditional wake detection methods have been successfully applied to the detection of a simple linear ship wake. However, they cannot effectively detect nonlinear wake and weak wake under high sea state conditions, whereas the deep-learning-based detection method could play to its strengths in this respect. Due to the lack of sufficient measured SAR images of ship wake to meet the training requirement for deep learning method, this paper explores the method to detect the nonlinear ship wake by combining electromagnetic scattering model with deep learning technique. The composite scene model of the sea surface and its wake is established first, then the facet scattering distribution of the ship wake and the sea background is analyzed with the help of the electromagnetic scattering model, and the simulation of the wake SAR images under the sea background is finally accomplished based on the modulation model. Combined with the simulation results and measured wake SAR images, the sample database is constructed. The You Only Look Once Version five algorithm (YOLOv5) based on deep learning techniques is applied to detect the wake target in complex conditions such as different sea states, multiple targets, curvilinear wakes, and weak wakes. The result show that the YOLOv5 leads to an obvious higher detection efficiency with satisfactory accuracy. Moreover, the comparison between YOLOv5 and the traditional Radon transform method for detecting nonlinear wakes in a strong noise background shows that the proposed method is better than the traditional object detection model. Thus, the proposed scheme would be a practical tool to deal with the detection of nonlinear ship wake and weak wake in complex scenarios, which will be helpful to the further remote sensing investigation of the ship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.