We present a novel multiview canonical correlation analysis model based on a variational approach. This is the first nonlinear model that takes into account the available graphbased geometric constraints while being scalable for processing large scale datasets with multiple views. It is based on an autoencoder architecture with graph convolutional neural network layers. We experiment with our approach on classification, clustering, and recommendation tasks on real datasets. The algorithm is competitive with state-of-the-art multiview representation learning techniques.
We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: (i) The model is inductive: it can embed new graphs without re-training in the presence of new data; (ii) The method takes into account both micro-structures and macro-structures by looking at the attributed graphs at different scales; (iii) The model is end-to-end differentiable: it is a building block that can be plugged into deep learning pipelines and allows for back-propagation. We show that combining a coarsening method having strong theoretical guarantees with mutual information maximization suffices to produce high quality embeddings. We evaluate them on classification tasks with common benchmarks of the literature. We show that our algorithm is competitive with state of the art among unsupervised graph representation learning methods.
The discrete Mumford-Shah formalism has been introduced for the image denoising problem, allowing to capture both smooth behavior inside an object and sharp transitions on the boundary. In the present work, we propose first to extend this formalism to graphs and to the problem of mixing matrix estimation. New algorithmic schemes with convergence guarantees relying on proximal alternating minimization strategies are derived and their efficiency (good estimation and robustness to initialization) are evaluated on simulated data, in the context of vote transfer matrix estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.