Chronic subdural hematoma (CSDH) is one of the most common neurosurgical conditions. There is lack of uniformity in the treatment of CSDH amongst surgeons in terms of various treatment strategies. Clinical presentation may vary from no symptoms to unconsciousness. CSDH is usually diagnosed by contrast-enhanced computed tomography scan. Magnetic resonance imaging (MRI) scan is more sensitive in the diagnosis of bilateral isodense CSDH, multiple loculations, intrahematoma membranes, fresh bleeding, hemolysis, and the size of capsule. Contrast-enhanced CT or MRI could detect associated primary or metastatic dural diseases. Although definite history of trauma could be obtained in a majority of cases, some cases may be secondary to coagulation defect, intracranial hypotension, use of anticoagulants and antiplatelet drugs, etc., Recurrent bleeding, increased exudates from outer membrane, and cerebrospinal fluid entrapment have been implicated in the enlargement of CSDH. Burr-hole evacuation is the treatment of choice for an uncomplicated CSDH. Most of the recent trials favor the use of drain to reduce recurrence rate. Craniotomy and twist drill craniostomy also play a role in the management. Dural biopsy should be taken, especially in recurrence and thick outer membrane. Nonsurgical management is reserved for asymptomatic or high operative risk patients. The steroids and angiotensin converting enzyme inhibitors may also play a role in the management. Single management strategy is not appropriate for all the cases of CSDH. Better understanding of the nature of the pathology, rational selection of an ideal treatment strategy for an individual patient, and identification of the merits and limitations of different surgical techniques could help in improving the prognosis.
Trigeminal neuralgia (TN) is a sudden, severe, brief, stabbing, and recurrent pain within one or more branches of the trigeminal nerve. Type 1 as intermittent and Type 2 as constant pain represent distinct clinical, pathological, and prognostic entities. Although multiple mechanism involving peripheral pathologies at root (compression or traction), and dysfunctions of brain stem, basal ganglion, and cortical pain modulatory mechanisms could have role, neurovascular conflict is the most accepted theory. Diagnosis is essentially clinically; magnetic resonance imaging is useful to rule out secondary causes, detect pathological changes in affected root and neurovascular compression (NVC). Carbamazepine is the drug of choice; oxcarbazepine, baclofen, lamotrigine, phenytoin, and topiramate are also useful. Multidrug regimens and multidisciplinary approaches are useful in selected patients. Microvascular decompression is surgical treatment of choice in TN resistant to medical management. Patients with significant medical comorbidities, without NVC and multiple sclerosis are generally recommended to undergo gamma knife radiosurgery, percutaneous balloon compression, glycerol rhizotomy, and radiofrequency thermocoagulation procedures. Partial sensory root sectioning is indicated in negative vessel explorations during surgery and large intraneural vein. Endoscopic technique can be used alone for vascular decompression or as an adjuvant to microscope. It allows better visualization of vascular conflict and entire root from pons to ganglion including ventral aspect. The effectiveness and completeness of decompression can be assessed and new vascular conflicts that may be missed by microscope can be identified. It requires less brain retraction.
Endoscopic third ventriculostomy (ETV) is considered as a treatment of choice for obstructive hydrocephalus. It is indicated in hydrocephalus secondary to congenital aqueductal stenosis, posterior third ventricle tumor, cerebellar infarct, Dandy-Walker malformation, vein of Galen aneurism, syringomyelia with or without Chiari malformation type I, intraventricular hematoma, post infective, normal pressure hydrocephalus, myelomeningocele, multiloculated hydrocephalus, encephalocele, posterior fossa tumor and craniosynostosis. It is also indicated in block shunt or slit ventricle syndrome. Proper Pre-operative imaging for detailed assessment of the posterior communicating arteries distance from mid line, presence or absence of Liliequist membrane or other membranes, located in the prepontine cistern is useful. Measurement of lumbar elastance and resistance can predict patency of cranial subarachnoid space and complex hydrocephalus, which decides an ultimate outcome. Water jet dissection is an effective technique of ETV in thick floor. Ultrasonic contact probe can be useful in selected patients. Intra-operative ventriculo-stomography could help in confirming the adequacy of endoscopic procedure, thereby facilitating the need for shunt. Intraoperative observations of the patent aqueduct and prepontine cistern scarring are predictors of the risk of ETV failure. Such patients may be considered for shunt surgery. Magnetic resonance ventriculography and cine phase contrast magnetic resonance imaging are effective in assessing subarachnoid space and stoma patency after ETV. Proper case selection, post-operative care including monitoring of ICP and need for external ventricular drain, repeated lumbar puncture and CSF drainage, Ommaya reservoir in selected patients could help to increase success rate and reduce complications. Most of the complications develop in an early post-operative, but fatal complications can develop late which indicate an importance of long term follow up.
Background: Intracranial haemorrhage accounts for 30-60 % of all stroke admissions into a hospital, with hypertension being the main risk factor. Presence of intraventricular haematoma is considered a poor prognostic factor due to the resultant obstruction to CSF and the mass effect following the presence of blood resulting in raised intracranial pressure and hydrocephalus. We report the results following endoscopic decompression of obstructive hydrocephalus and evacuation of haematoma in patients with hypertensive intraventricular haemorrhage.
Endoscopic techniques are increasingly being used in recent times for various spinal and brain pathologies. Although endoscopic neurosurgical technique holds the potential for reducing morbidity, it is also associated with limitations such as steep learning curve, obstruction in manipulation of instruments by telescope in an already limited exposure, proximal blind spot, visual obscuration, disorientation, loss of stereoscopic image and others. Neuroendoscopy is distinct from micro-surgery and a thorough understanding of the technique and its limitations is required to get maximal benefit. Difficulties in controlling bleeding, longer operative time are common obstacles with this technique, especially in early learning curve. Higher complication rate during initial learning curve can be reduced by attending live workshops, practice on models and hands on cadaveric workshops. Large vascular lesions should be avoided and a thorough knowledge of possible complications and techniques to avoid such complications can improve results in endoscopic surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.