Total knee replacement (TKR) is a remarkable achievement in biomedical science that enhances human life. However, human beings still suffer from knee-joint-related problems such as aseptic loosening caused by excessive wear between articular surfaces, stress-shielding of the bone by prosthesis, and soft tissue development in the interface of bone and implant due to inappropriate selection of TKR material. The choice of most suitable materials for the femoral component of TKR is a critical decision; therefore, in this research paper, a hybrid multiple-criteria decision-making (MCDM) tactic is applied using the degree of membership (DoM) technique with a varied system, using the weighted sum method (WSM), the weighted product method (WPM), the weighted aggregated sum product assessment method (WASPAS), an evaluation based on distance from average solution (EDAS), and a technique for order of preference by similarity to ideal solution (TOPSIS). The weights of importance are assigned to different criteria by the equal weights method (EWM). Furthermore, sensitivity analysis is conducted to check the solidity of the projected tactic. The weights of importance are varied using the entropy weights technique (EWT) and the standard deviation method (SDM). The projected hybrid MCDM methodology is simple, reliable and valuable for a conflicting decision-making environment.
Double-ellipsoidal volumetric heat with Gaussian distribution of heat intensity is one of the most popular heat source model used in fusion welding process simulations. However, the major difficulty of this kind of heat source model is to define the parameters before start of simulation. It is common practice to define the heat source parameters from experimental measurement of weld dimensions for a particular welding condition that meet the demand of two parameters i.e. weld width and penetration. Till date, the definition of front and rear length of double ellipsoidal is to-some-extent arbitrary in linear welding. A sensitivity analysis shows that this ratio has significant effect on weld dimensions as well as thermal distortion and residual stress of final weld joint. This problem has been addressed in present work where the optimum value of the ratio of front and rear length of double ellipsoidal heat source model is designed within the kernel of an integrated optimization algorithm. The ratio is assumed as function of weld velocity and a suitable functional form is designed over a range of welding current and velocity. The proposed trend of ratio along with optimum values demonstrate fair agreement of experimentally measured weld dimensions for linear gas tungsten arc (GTA) welding process. 3D finite element model of thermal and mechanical analysis is developed and assuming elasto-plastic response of material. Temperature dependent material properties along with latent heat of melting and solidification are incorporated in numerical simulation.
Investigation of the selective laser melting (SLM) process, using finite element method, to understand the influences of laser power and scanning speed on the heat flow and melt-pool dimensions is a challenging task. Most of the existing studies are focused on the study of thin layer thickness and comparative study of same materials under different manufacturing conditions. The present work is focused on comparative analysis of thermal cycles and complex melt-pool behavior of a high layer thickness multi-layer laser additive manufacturing (LAM) of pure Titanium (Ti) and Inconel 718. A transient 3D finite-element model is developed to perform a quantitative comparative study on two materials to examine the temperature distribution and disparities in melt-pool behaviours under similar processing conditions. It is observed that the layers are properly melted and sintered for the considered process parameters. The temperature and melt-pool increases as laser power move in the same layer and when new layers are added. The same is observed when the laser power increases, and opposite is observed for increasing scanning speed while keeping other parameters constant. It is also found that Inconel 718 alloy has a higher maximum temperature than Ti material for the same process parameter and hence higher melt-pool dimensions.
Clean technological machining operations can improve traditional methods’ environmental, economic, and technical viability, resulting in sustainability, compatibility, and human-centered machining. This, this work focuses on sustainable machining of Al-Mg-Zr alloy with minimum quantity lubricant (MQL)-assisted machining using a polycrystalline diamond (PCD) tool. The effect of various process parameters on the surface roughness and cutting temperature were analyzed. The Taguchi L25 orthogonal array-based experimental design has been utilized. Experiments have been carried out in the MQL environment, and pressure was maintained at 8 bar. The multiple responses were optimized using desirability function analysis (DFA). Analysis of variance (ANOVA) shows that cutting speed and depth of cut are the most prominent factors for surface roughness and cutting temperature. Therefore, the DFA suggested that, to attain reasonable response values, a lower to moderate value of depth of cut, cutting speed and feed rate are appreciable. An artificial neural network (ANN) model with four different learning algorithms was used to predict the surface roughness and temperature. Apart from this, to address the sustainability aspect, life cycle assessment (LCA) of MQL-assisted and dry machining has been carried out. Energy consumption, CO2 emissions, and processing time have been determined for MQL-assisted and dry machining. The results showed that MQL-machining required a very nominal amount of cutting fluid, which produced a smaller carbon footprint. Moreover, very little energy consumption is required in MQL-machining to achieve high material removal and very low tool change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.