Recommender Systems are smart systems that bring to the users a set of personalized suggestions from an specific type of items(objects). In order to do this, several techniques are used to collect the user’s characteristics for, using data processing, to find a subset of items that could be relevant to him. The improvement of the recommendation’s accuracy is crucial because offering relevant content (based on needs or likes) to the visitors of web sites, mainly commercial ones, is trending. This article shows a comparative analysis among different similarity and evaluation metrics proposed for collaborative-filtering based recommender systems; doing tests on commonly used datasets to determine its efficiency on production time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.