Background.
Calibration is the process of estimating parameters of a mathematical model by matching model outputs to calibration targets. In the presence of nonidentifiability, multiple parameter sets solve the calibration problem, which may have important implications for decision making. We evaluate the implications of nonidentifiability on the optimal strategy and provide methods to check for nonidentifiability.
Methods.
We illustrate nonidentifiability by calibrating a three-state Markov model of cancer relative survival (RS). We performed two different calibration exercises: (1) only including RS as a calibration target and (2) adding the ratio between the two non-death states over time as an additional target. We used the Nelder-Mead (NM) algorithm to identify parameter sets that best matched the calibration targets. We used collinearity and likelihood profile analyses to check for nonidentifiability. We then estimated the benefit of a hypothetical treatment in terms of life expectancy gains using different, but equally good-fitting, parameter sets. We also applied collinearity analysis to a realistic model of the natural history of colorectal cancer.
Results.
When only RS is used as the calibration target, two different parameter sets yield similar maximum likelihood values. The high collinearity index and the bimodal likelihood profile on both parameters demonstrated the presence of nonidentifiability. These different, equally good-fitting, parameter sets produce different estimates of the treatment effectiveness (0.67 vs 0.31 years), which could influence the optimal decision. By incorporating the additional target, the model becomes identifiable with a collinearity index of 3.5 and a unimodal likelihood profile.
Conclusions.
In the presence of nonidentifiability, equally-likely parameter estimates might yield different conclusions. Checking for the existence of nonidentifiability and its implications should be incorporated into standard model calibration procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.