This paper addresses the problem of corpus-level entity typing, i.e., inferring from a large corpus that an entity is a member of a class such as "food" or "artist". The application of entity typing we are interested in is knowledge base completion, specifically, to learn which classes an entity is a member of. We propose FIGMENT to tackle this problem. FIGMENT is embedding-based and combines (i) a global model that scores based on aggregated contextual information of an entity and (ii) a context model that first scores the individual occurrences of an entity and then aggregates the scores. In our evaluation, FIGMENT strongly outperforms an approach to entity typing that relies on relations obtained by an open information extraction system.
Word embeddings typically represent different meanings of a word in a single conflated vector. Empirical analysis of embeddings of ambiguous words is currently limited by the small size of manually annotated resources and by the fact that word senses are treated as unrelated individual concepts. We present a large dataset based on manual Wikipedia annotations and word senses, where word senses from different words are related by semantic classes. This is the basis for novel diagnostic tests for an embedding's content: we probe word embeddings for semantic classes and analyze the embedding space by classifying embeddings into semantic classes. Our main findings are: (i) Information about a sense is generally represented well in a single-vector embedding -if the sense is frequent. (ii) A classifier can accurately predict whether a word is single-sense or multi-sense, based only on its embedding. (iii) Although rare senses are not well represented in single-vector embeddings, this does not have negative impact on an NLP application whose performance depends on frequent senses.
We introduce a new methodology for intrinsic evaluation of word representations. Specifically, we identify four fundamental criteria based on the characteristics of natural language that pose difficulties to NLP systems; and develop tests that directly show whether or not representations contain the subspaces necessary to satisfy these criteria. Current intrinsic evaluations are mostly based on the overall similarity or full-space similarity of words and thus view vector representations as points. We show the limits of these point-based intrinsic evaluations. We apply our evaluation methodology to the comparison of a count vector model and several neural network models and demonstrate important properties of these models.
In this paper, we address two different types of noise in information extraction models: noise from distant supervision and noise from pipeline input features. Our target tasks are entity typing and relation extraction. For the first noise type, we introduce multi-instance multi-label learning algorithms using neural network models, and apply them to fine-grained entity typing for the first time. Our model outperforms the state-of-the-art supervised approach which uses global embeddings of entities. For the second noise type, we propose ways to improve the integration of noisy entity type predictions into relation extraction. Our experiments show that probabilistic predictions are more robust than discrete predictions and that joint training of the two tasks performs best.
Extracting information about entities remains an important research area. This paper addresses the problem of corpus-level entity typing, i.e., inferring from a large corpus that an entity is a member of a class, such as "food" or "artist". The application of entity typing we are interested in is knowledge base completion, specifically, to learn which classes an entity is a member of. We propose FIGMENT to tackle this problem. FIGMENT is embedding-based and combines (i) a global model that computes scores based on global information of an entity and (ii) a context model that first evaluates the individual occurrences of an entity and then aggregates the scores.Each of the two proposed models has specific properties. For the global model, learning highquality entity representations is crucial because it is the only source used for the predictions. Therefore, we introduce representations using the name and contexts of entities on the three levels of entity, word, and character. We show that each level provides complementary information and a multi-level representation performs best. For the context model, we need to use distant supervision since there are no context-level labels available for entities. Distantly supervised labels are noisy and this harms the performance of models. Therefore, we introduce and apply new algorithms for noise mitigation using multi-instance learning. We show the effectiveness of our models on a large entity typing dataset built from Freebase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.