Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Dangerous organophosphorus (OP) compounds have been used as insecticides in agriculture and in chemical warfare. Because exposure to OP could create a danger for humans in the future, butyrylcholinesterase (BChE) has been developed for prophylaxis to these chemicals. Because it is impractical to obtain sufficient quantities of plasma BChE to treat humans exposed to OP agents, the production of recombinant BChE (rBChE) in milk of transgenic animals was investigated. Transgenic mice and goats were generated with human BChE cDNA under control of the goat -casein promoter. Milk from transgenic animals contained 0.1-5 g/liter of active rBChE. The plasma half-life of PEGylated, goat-derived, purified rBChE in guinea pigs was 7-fold longer than non-PEGylated dimers. The rBChE from transgenic mice was inhibited by nerve agents at a 1:1 molar ratio. Transgenic goats produced active rBChE in milk sufficient for prophylaxis of humans at risk for exposure to OP agents.organophosphorus nerve agent ͉ recombinant protein expression ͉ transgenic production H uman plasma butyrylcholinesterase (huBChE) (EC 3.1.1.8) is a globular, tetrameric serine esterase with a molecular mass of Ϸ340 kDa that is stable in plasma with a half-life of Ϸ12 days (1, 2). Although the physiological function of huBChE is unclear, the enzyme prevents intoxication of animals exposed to organophosphorus (OP) compounds (3, 4). The huBChE enzyme also hydrolyzes many ester-containing drugs, such as cocaine and succinylcholine (5). The toxicity of OP agents is due to irreversible inhibition of acetylcholinesterase and the subsequent continuous stimulation of neurons by acetylcholine (6). Administration of exogenous huBChE, which irreversibly binds OP agents to prevent inactivation of acetylcholinesterase and continuous cholinergic stimulation, is a potential strategy for preventing toxicity from OP agents (4). Although huBChE has been obtained from human plasma by a large scale purification technique, this procedure is severely limited by the volume of human plasma needed (7). It is unlikely that a sufficient amount of enzyme could be purified commercially by this technique. Because of the 1:1 stoichiometry required for protection against exposure to OP agents (8), large quantities of huBChE are needed for effective prophylaxis and treatment of exposure. Compared with other potential enzymatic bioscavengers of OP agents, huBChE has a broad spectrum of activity, a relatively long half-life, and limited, if any, physiological side effects (9). Producing recombinant BChE (rBChE) is an alternative to purification of the enzyme from human plasma. Recombinant huBChE has been expressed in Escherichia coli (10), albeit in a nonfunctional form; mammalian 293T (11); and CHO (12) cells. However, these expression systems cannot economically produce sufficient quantities of rBChE with a residence time similar to native huBChE that would allow development of the enzyme as an agent for prophylaxis against OP poisoning.The production of recombinant proteins by the mammary g...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.