High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at https://github.com/HRNet. ! 1 INTRODUCTION D EEP convolutional neural networks (DCNNs) have achieved state-of-the-art results in many computer vision tasks, such as image classification, object detection, semantic segmentation, human pose estimation, and so on. The strength is that DCNNs are able to learn richer representations than conventional hand-crafted representations. Most recently-developed classification networks, including AlexNet [59], VGGNet [101], GoogleNet [108], ResNet [39], etc., follow the design rule of LeNet-5 [61]. This is depicted in Figure 1 (a): gradually reduce the spatial size of the feature maps, connect the convolutions from high resolution to low resolution in series, and lead to a low-resolution representation, which is further processed for classification.High-resolution representations are needed for positionsensitive tasks, e.g., semantic segmentation, human pose estimation, and object detection. The previous state-of-the-art methods adopt the high-resolution recovery process to raise the representation resolution from the low-resolution representation outputted by a classification or classification-like network as depicted in Figure 1 (b), e.g., Hourglass [83], Seg-Net [3], DeconvNet [85], U-Net [95], SimpleBaseline [124], and encoder-decoder [90]. In addition, dilated convolutions are used to remove some down-sample layers and thus yield medium-resolution representations [15], [144].We present a novel architecture, namely High-Resolution Net (HRNet), which is able to maintain high-resolution representations through the whole process. We start from a highresolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network • J. Wang is with Microsoft Research,
Few-shot learning is a nascent research topic, motivated by the fact that traditional deep learning methods require tremendous amounts of data. The scarcity of annotated data becomes even more challenging in semantic segmentation since pixellevel annotation in segmentation task is more labor-intensive to acquire. To tackle this issue, we propose an Attentionbased Multi-Context Guiding (A-MCG) network, which consists of three branches: the support branch, the query branch, the feature fusion branch. A key differentiator of A-MCG is the integration of multi-scale context features between support and query branches, enforcing a better guidance from the support set. In addition, we also adopt a spatial attention along the fusion branch to highlight context information from several scales, enhancing self-supervision in one-shot learning. To address the fusion problem in multi-shot learning, Conv-LSTM is adopted to collaboratively integrate the sequential support features to elevate the final accuracy. Our architecture obtains state-of-the-art on unseen classes in a variant of PASCAL VOC12 dataset and performs favorably against previous work with large gains of 1.1%, 1.4% measured in mIoU in the 1-shot and 5-shot setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.