Lateral gene transfer is an important mechanism of natural variation among prokaryotes, but the significance of its quantitative contribution to genome evolution is debated. Here, we report networks that capture both vertical and lateral components of evolutionary history among 539,723 genes distributed across 181 sequenced prokaryotic genomes. Partitioning of these networks by an eigenspectrum analysis identifies community structure in prokaryotic gene-sharing networks, the modules of which do not correspond to a strictly hierarchical prokaryotic classification. Our results indicate that, on average, at least 81 ؎ 15% of the genes in each genome studied were involved in lateral gene transfer at some point in their history, even though they can be vertically inherited after acquisition, uncovering a substantial cumulative effect of lateral gene transfer on longer evolutionary time scales.community structure ͉ molecular phylogeny ͉ microbial genomes
Pathogens compete for hosts through patterns of cross-protection conferred by immune responses to antigens. In Plasmodium falciparum malaria, the var multigene family encoding for the major blood-stage antigen PfEMP1 has evolved enormous genetic diversity through ectopic recombination and mutation. With 50–60 var genes per genome, it is unclear whether immune selection can act as a dominant force in structuring var repertoires of local populations. The combinatorial complexity of the var system remains beyond the reach of existing strain theory and previous evidence for non-random structure cannot demonstrate immune selection without comparison with neutral models. We develop two neutral models that encompass malaria epidemiology but exclude competitive interactions between parasites. These models, combined with networks of genetic similarity, reveal non-neutral strain structure in both simulated systems and an extensively sampled population in Ghana. The unique population structure we identify underlies the large transmission reservoir characteristic of highly endemic regions in Africa.
Existing theory on competition for hosts between pathogen strains has proposed that immune selection can lead to the maintenance of strain structure consisting of discrete, weakly overlapping antigenic repertoires. This prediction of strain theory has conceptual overlap with fundamental ideas in ecology on niche partitioning and limiting similarity between coexisting species in an ecosystem, which oppose the hypothesis of neutral coexistence. For Plasmodium falciparum, strain theory has been specifically proposed in relation to the major surface antigen of the blood stage, known as PfEMP1 and encoded by the multicopy multigene family known as the var genes. Deep sampling of the DBLα domain of var genes in the local population of Bakoumba, West Africa, was completed to define whether patterns of repertoire overlap support a role of immune selection under the opposing force of high outcrossing, a characteristic of areas of intense malaria transmission. Using a 454 high-throughput sequencing protocol, we report extremely high diversity of the DBLα domain and a large parasite population with DBLα repertoires structured into nonrandom patterns of overlap. Such population structure, significant for the high diversity of var genes that compose it at a local level, supports the existence of "strains" characterized by distinct var gene repertoires. Nonneutral, frequency-dependent competition would be at play and could underlie these patterns. With a computational experiment that simulates an intervention similar to mass drug administration, we argue that the observed repertoire structure matters for the antigenic var diversity of the parasite population remaining after intervention.Plasmodium falciparum | var genes | parasite diversity | strain structure | Gabon
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.