This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state-of-the-art of harvesting robots using quantitative measures, and to reflect on the crop environment and literature review to formulate challenges and directions for future research and development. Harvesting robots were reviewed regarding the crop harvested in a production environment, performance indicators, design process techniques used, hardware design decisions, and algorithm characteristics. On average, localization success was 85%, detachment success was 75%, harvest success was 66%, fruit damage was 5%, peduncle damage was 45%, and cycle time was 33 s. A kiwi harvesting robot achieved the shortest cycle time of 1 s. Moreover, the performance of harvesting robots did not improve in the past three decades, and none of these 50 robots was commercialized. Four future challenges with R&D directions were identified to realize a positive trend in performance and to successfully implement harvesting robots in practice: (1) simplifying the task, (2) enhancing the robot, (3) defining requirements and measuring performance, and (4) considering additional requirements for successful implementation. This review article may provide new directions for future automation projects in high-value crops. C 2014 Wiley Periodicals, Inc.
Body posture and finger pointing are a natural modality for human-machine interaction, but first the system must know what it's seeing.
This paper presents the development, testing and validation of SWEEPER, a robot for harvesting sweet pepper fruit in greenhouses. The robotic system includes a six degrees of freedom industrial arm equipped with a specially designed end effector, RGB-D camera, high-end computer with graphics processing unit, programmable logic controllers, other electronic equipment, and a small container to store harvested fruit. All is mounted on a cart that autonomously drives on pipe rails and concrete floor in the end-user environment. The overall operation of the harvesting robot is described along with details of the algorithms for fruit detection and localization, grasp pose estimation, and motion control. The main contributions of this paper are the integrated system design and its validation and extensive field testing in a commercial greenhouse for different varieties and growing conditions. A total of 262 fruits were involved in a 4-week long testing period. The average cycle time to harvest a fruit was 24 s. Logistics took approximately 50% of this time (7.8 s for discharge of fruit and 4.7 s for platform movements). Laboratory experiments have proven that the cycle time can be reduced to 15 s by running the robot manipulator at a higher speed. The harvest success rates were 61% for the best fit crop conditions and 18% in current crop conditions. This reveals the importance of finding the best fit crop conditions and crop varieties for successful robotic harvesting. The SWEEPER robot is the first sweet pepper harvesting robot to demonstrate this kind of performance in a commercial greenhouse.
Despite extensive research conducted in machine vision for harvesting robots, practical success in this field of agrobotics is still limited. This article presents a comprehensive review of classical and state-of-the-art machine vision solutions employed in such systems, with special emphasis on the visual cues and machine vision algorithms used. We discuss the advantages and limitations of each approach and we examine these capacities in light of the challenges ahead. We conclude with suggested directions from the general computer vision literature which could assist our research community meet these challenges and bring us closer to the goal of practical selective fruit harvesting robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.