Wetting and spreading in high temperature reactive metal-metal systems is of significant importance in many joining processes. An overview of reactive wetting is presented outlining the principal differences between inert and reactive wetting. New experimental evidence is presented that identifies an early time regime in reactive wetting in which spreading occurs without macroscopic morphological change of the solid-liquid interface. This regime precedes the heavily studied reactive wetting regime. Additional new experimental evidence is presented of kinetic roughening in a high temperature reactive system. Quantitative characterization of this roughening reveals similarities with room temperature systems. These new data provide evidence that supports the existence of several sequential time regimes in the reactive wetting process in which different physicochemical phenomena are dominant.
Abstract:The reactive-wetting process, e.g. spreading of a liquid droplet on a reactive substrate is known as a complex, non-linear process with high sensitivity to minor fluctuations. The dynamics and geometry of the interface (triple line) between the materials is supposed to shed light on the main mechanisms of the process. We recently studied a room temperature reactive-wetting system of a small (∼ 150 µm) Hg droplet that spreads on a thin (∼ 4000 Å) Ag substrate. We calculated the kinetic roughening exponents (growth and roughness), as well as the persistence exponent of points on the advancing interface.In this paper we address the question whether there exists a well-defined model to describe the interface dynamics of this system, by performing two sets of numerical simulations. The first one is a simulation of an interface propagating according to the QKPZ equation, and the second one is a landscape of an Ising chain with ferromagnetic interactions in zero temperature. We show that none of these models gives a full description of the dynamics of the experimental reactivewetting system, but each one of them has certain common growth properties with it. We conjecture that this results from a microscopic behavior different from the macroscopic one. The microscopic mechanism, reflected by the persistence exponent, resembles the Ising behavior, while in the macroscopic scale, exemplified by the growth exponent, the dynamics looks more like the QKPZ dynamics.
In this paper, we report on persistence results of reactive-wetting advancing interfaces performed with mercury on silver at room temperature. Earlier kinetic roughening studies of reactive-wetting systems at room temperature as well as at high temperatures revealed some limited information on the spatiotemporal behavior of these systems. However, by calculating the persistence exponent, we were able to identify two distinct kinetic time regimes in this process. In the first one, while the interface is moving but its width is not yet growing, the persistence exponent is θ=0.55±0.05, which is typical for a random, noisy behavior. In the second regime, there is an effective growth of the interface width with a growth exponent β=0.67±0.06 followed by saturation, according to the Family-Vicsek description of interface growth. The persistence exponent in this regime is θ=0.37±0.05, which indicates that the relation θ=1-β seems to hold even for this nonlinear experimental system.
Kinetic roughening analysis is utilized to investigate fingerlike flux-front patterns observed in a Bi 2 Sr 2 CaCu 2 O 8+δ single crystal incorporating columnar defects. At small-length scales, scaling exponents consistent with the Kardar-Parisi-Zhang (KPZ) model for a moving front in quenched noise (QKPZ) are found. A crossover to scaling exponents of a KPZ system, dominated by temporal noise, can be identified at a large-length scale, which increases with temperature. The induction-temperature range for which the QKPZ behavior is observed is linked to the accommodation line characterizing the crossover between dominating vortex-defects and vortex-vortex interaction regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.