A novel controlled release formulation (CRF) of the herbicide imazapyr (IMP) was designed to reduce its leaching,which causes soil and water contamination. The anionic herbicide IMP was bound to polydiallyldimethylammonium-chloride (PDADMAC)-montmorillonite composites. PDADMAC adsorption reached a high loading of polymer, which resulted in charge reversal of the clay and promoted IMP binding. The composites were characterized by Fourier transform infrared, zeta potential, and X-ray diffraction measurements, indicating electrostatic interactions of the polycation with the surface, polycation intercalation in the clay and suggesting a configuration as loops and tails on the surface at high loadings. IMP binding to the composites is affected by polycation loading and flocculation. Upon adding high concentrations of IMP to a composite of 0.16 g/g, we obtained high herbicide loadings (66% active ingredient). IMP release from the CRFs applied on a thin layer of soil was substantially slower than its release from the commercial formulation (Arsenal). Accordingly, soil column bioassays indicated reduced herbicide leaching (nearly 2-fold) upon applying the CRFs while maintaining good herbicidal activity. The new PDADMAC-clay formulations are promising from the environmental and weed control management points of view.
The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.