The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75 th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future.
This paper presents a vision-based navigation system designed for indoor localization. The suggested framework works as a standalone 3 D positioning system by fusing a sophisticated optical-flow pedometry with map constrains using an advanced particle filter. The presented method requires no personal calibration and works on standard smartphones with relatively low energy consumption. Field experiments on Android smartphones show that the expected 3 D error is about 1–2 m in most real-life scenarios.
No abstract
In virtually all present-day robotic applications, the design approach is based on controllers which utilize measurements of both position and velocity. However, velocity measurements are often contaminated by noise, and cause the controller's performance to deteriorate. Therefore the function of the observer is essential for reconstructing the velocity signals. The present study establishes a new systematic procedure that creates the possibility of obtaining an observer for estimating the links velocity in a rigid robot. The underlying approach adopts the concept of semiglobal stabilizability, and the resulting observer's output converges asymptotically to the system's velocity vector. In particular, the present approach can be implemented to the case where the robot velocity is either not uniformly bounded or its upper bound is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.