HFI is accompanied by an increase in thickness of all calvarial bones and reduced ICV. In addition, the thickening process initiated by HFI is synchronized among the calvarial bones. Presence of HFI suggests a decrease in brain volume and has a major clinical significance as it may indicate the beginning of degenerative processes of the brain. In addition, as females age, their skulls tend to develop more robust characteristics.
Human G93A-superoxide dismutase-1 (G93AhSOD1) mutation causes amyotrophic lateral sclerosis (ALS) in rodents and humans. Recent observations indicate gain of interaction of G93AhSOD1 with cytosolic malate dehydrogenase (MDH1) and subsequent impairment in the malate aspartate shuttle which is vital to neurons. Using fluorescence resonance energy transfer (FRET), we screened an MDH1 derived peptide library for a decoy that would interrupt the G93AhSOD1-MDH1 interaction. A specific 23 amino acid blocker of this interaction was thus discovered, and interruption of interaction was confirmed by pull-down immunoprecipitation studies. A cell permeable 5-carboxytetramethylrhodamine derivative of the decoy peptide improved ATP content of motor neuron derived NSC-34 cells expressing G93AhSOD1 and enhanced cell survival under rotenone and low glucose challenges. Decoy agents capable of interrupting the gain of toxic interaction of G93AhSOD1 with MDH1 provide further evidence for the role of malate aspartate shuttle inhibition in G93AhSOD1 toxicity and a promising new route in ALS drug research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.