Focal chromosomal amplification is an important route to generating cancer through mediating over-expression of oncogenes 1 – 3 or to developing cancer therapy resistance by increasing expression of a gene whose action diminishes efficacy of an anti-cancer drug. Here we used whole-genome sequencing of clonal isolates developing chemotherapeutic resistance to identify chromothripsis as a major driver of extrachromosomal DNA (ecDNA) amplification into circular double minutes (DMs) through PARP- and DNA-PKcs-dependent mechanisms. Longitudinal analyses revealed that DMs undergo continuing structural evolution to promote increased drug tolerance through additional chromothriptic events. In-situ Hi-C sequencing is used to demonstrate that DMs preferentially tether near chromosome ends where they re-integrate when DNA damage is present. Intrachromosomal amplifications formed initially under low-level drug selection undergo continuing breakage-fusion-bridge cycles, generating >100 megabase-long amplicons that we show become trapped within interphase bridges and then shattered, producing micronuclei that mediate DM formation. Similar genome rearrangement profiles linked to localized gene amplification are identified in human cancers with acquired drug resistance or with oncogene amplifications. We propose that chromothripsis is a primary mechanism accelerating genomic DNA amplification and which enables rapid acquisition of tolerance to altered growth conditions.
The response to tissue injury involves the coordination of inflammatory and repair processes. IL-6 expression correlates with the onset and severity of acute kidney injury (AKI), but its contribution to pathogenesis remains unclear. This study established a critical role for IL-6 in both the inflammatory response and the resolution of AKI. IL-6 -deficient mice were resistant to HgCl 2 -induced AKI compared with wild-type mice. The accumulation of peritubular neutrophils was lower in IL-6 -deficient mice than in wild-type mice, and neutrophil depletion before HgCl 2 administration in wild-type mice significantly reduced AKI; these results demonstrate the critical role of IL-6 signaling in the injurious inflammatory process in AKI. Renal IL-6 expression and STAT3 activation in renal tubular epithelial cells significantly increased during the development of injury, suggesting active IL-6 signaling. Although a lack of renal IL-6 receptors (IL-6R) precludes the activation of classical signaling pathways, IL-6 can stimulate target cells together with a soluble form of the IL-6R (sIL-6R) in a process termed trans-signaling. During injury, serum sIL-6R levels increased three-fold, suggesting a possible role for IL-6 trans-signaling in AKI. Stimulation of IL-6 trans-signaling with an IL-6/sIL-6R fusion protein activated STAT3 in renal tubular epithelium and prevented AKI. IL-6/sIL-6R reduced lipid peroxidation after injury, suggesting that its protective effect may be largely mediated through amelioration of oxidative stress. In summary, IL-6 simultaneously promotes an injurious inflammatory response and, through a mechanism of transsignaling, protects the kidney from further injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.