This work evaluates the feasibility to manufacture polylactic acid (PLA) composites using jute fiber fabrics. For characterization, PLA-fused filament was successfully deposed onto jute fabrics to print dog-bone tensile specimens (Type I specimen from ASTM D638). The jute fabrics were chemically modified, treated with flame retardant additives, and sprayed with aerosol adhesive to improve the mechanical properties of PLA/Jute fabric composites. The elastic modulus and the strength of PLA were higher than PLA composites, and the plastic deformation of the PLA composites was slightly lower than PLA. Tomography scans revealed the fabrics were well oriented and some adherence between jute fabrics and PLA. Viscoelastic properties of PLA composites resulted in the reduction in storage modulus and the reduction in intensity in the damping factor attributed to segmental motions with no variations in the glass transition temperature. Flame retardant and spray adhesive on jute fabrics promoted better response to time of burning than PLA and PLA with modified fibers. The results presented in this work lead to the need for a more detailed investigation of the effect of plant fiber fabrics as reinforcement of 3D printed objects for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.