In this work, we introduce one-time programs, a new computational paradigm geared towards security applications. A one-time program can be executed on a single input, whose value can be specified at run time. Other than the result of the computation on this input, nothing else about the program is leaked. Hence, a one-time program is like a black box function that may be evaluated once and then "self destructs." This also extends to k-time programs, which are like black box functions that can be evaluated k times and then self destruct. One-time programs serve many of the same purposes of program obfuscation, the obvious one being software protection, but also including applications such as temporary transfer of cryptographic ability. Moreover, the applications of one-time programs go well beyond those of obfuscation, since one-time programs can only be executed once (or more generally, a limited number of times) while obfuscated programs have no such bounds. For example, one-time programs lead naturally to electronic cash or token schemes: coins are generated by a program that can only be run once, and thus cannot be double spent. Most significantly, the new paradigm of one-time computing opens new avenues for conceptual research. In this work we explore one such avenue, presenting the new concept of "one-time proofs," proofs that can only be verified once and then become useless and unconvincing. All these tasks are clearly impossible using software alone, as any piece of software can be copied and run again, enabling the user to execute the program on more than one input. All our solutions employ a secure memory device, inspired by the cryptographic notion of interactive oblivious transfer protocols, that stores two secret keys (k0, k1). The device takes as input a single bit b ∈ {0, 1}, outputs k b , and then self destructs. Using such devices, we demonstrate that for every input length, any standard program (Turing machine) can be efficiently compiled into a functionally equivalent one-time program. We also show how this memory device can
Abstract. Following Gennaro, Gentry, and Parno (Cryptology ePrint Archive 2009/547), we use fully homomorphic encryption to design improved schemes for delegating computation. In such schemes, a delegator outsources the computation of a function F on many, dynamically chosen inputs xi to a worker in such a way that it is infeasible for the worker to make the delegator accept a result other than F (xi). The "online stage" of the Gennaro et al. scheme is very efficient: the parties exchange two messages, the delegator runs in time poly(log T ), and the worker runs in time poly(T ), where T is the time complexity of F . However, the "offline stage" (which depends on the function F but not the inputs to be delegated) is inefficient: the delegator runs in time poly(T ) and generates a public key of length poly(T ) that needs to be accessed by the worker during the online stage.Our first construction eliminates the large public key from the Gennaro et al. scheme. The delegator still invests poly(T ) time in the offline stage, but does not need to communicate or publish anything. Our second construction reduces the work of the delegator in the offline stage to poly(log T ) at the price of a 4-message (offline) interaction with a poly(T )-time worker (which need not be the same as the workers used in the online stage). Finally, we describe a "pipelined" implementation of the second construction that avoids the need to re-run the offline construction after errors are detected (assuming errors are not too frequent).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.