Although the optimization of wind turbine blade aerodynamic performance has achieved fruitful results, whether airfoil concavity, an important method for preventing flow separation, is also feasible for improving the aerodynamic performance has not been confirmed scientifically. Thus, we selected the blade of a small horizontal-axis wind turbine as a research model and proposed an optimization method based on airfoil concavity near the trailing edge of the blade suction surface. The experimental results showed that airfoil concavity improved blade aerodynamic performance by 3–15%. Subsequently, its effects on the sound pressure level within the wake flow field were investigated using an acoustic array, and the results suggested that the sound pressure level was reduced by 9.6–15.8%. Lastly, a modal test of the rotor blade was conducted. Although the natural frequencies of the 1st and 2nd order vibrations had hardly changed, their vibrational stiffness were increased by 7 and 4.9%, respectively, which indicated that airfoil concavity significantly improved structural robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.