Approach: First, the heart rate variability (HRV) is extracted from EOG with the Weight Calculation Algorithm (WCA) and an “HYF” RR interval detection algorithm. Second, three feature sets were extracted from HRV segments and EOG segments: time-domain features, frequency domain features and nonlinear-domain features. The frequency domain features and nonlinear-domain features were extracted by using Discrete Wavelet Transform (DWT), Autoregressive (AR), and Power Spectral entropy (PSE), and Refined Composite Multiscale Dispersion Entropy (RCMDE). Third, a new “Parallel Fusion Method” (PFM) for sleep stage classification is proposed. Three kinds of feature sets from EOG and HRV segments are fused by using PFM. Fourth, Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM) classification models is employed for sleep staging. Main results: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the new sleep staging approach. The performance of the proposed method is testedby evaluating the average accuracy, Kappa coefficient. The average accuracy of sleep classification results by using XGBoost classification model with PFM is 82.7% and the kappa coefficient is 0.711, also by using SVM classification model with the PFM is 83.7%, and the kappa coefficient is 0.724. Experimental results show that the performance of the proposed method is competitive with the most current methods and results, and the recognition rate of S1 stage is significantly improved. Significance: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the EOG and HRV signals are fused, which can be beneficial for monitor sleep quality and keep abreast of health conditions. Besides, our study provides good research ideas and methods for scholars, doctors and individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.